Skip to main content

Lessons Learned from Positive Biomechanics and Positive Clinical Outcomes

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

This chapter seeks to explore how biomechanical studies positively influence clinical procedures by reviewing the literature relevant to three of the largest modalities in spinal surgery: anterior cervical plating, pedicle screws and rods, and interbody fusion devices. The area of focus within anterior cervical plating includes the introduction of plating systems to increase stability and the recent shift towards more dynamic systems. Furthermore, the differences between various pedicle screw and rod constructs as well as lumbar interbody fusion device configurations and approaches will be examined in detail to demonstrate the correlation between biomechanical results and clinical outcomes. The lessons garnered throughout this review will demonstrate how biomechanics can be best utilized to evaluate the efficacy of new devices, provide possible explanations to device complications, and refine design interactions to improve care and compare various device designs. Therefore, researchers and surgeons should be able to distill the important elements of using biomechanical and clinical data synergistically to prove both device and procedural success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ames C, Acosta F, Chi J, Iyengar J, Muiru W, Acaroglu E, Puttlitz C (2005) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels. J Biomech 30(19):562–566

    Google Scholar 

  • Brodke D, Gollogly S (2001) Dynamic cervical plates biomechanical evaluation of load sharing and stiffness. Spine 26(12):1324–1329

    Article  CAS  Google Scholar 

  • Cheriyan T, Lafage V, Bendo J, Spivak J, Goldstein J, Errico T (2015) Complications of unilateral versus bilateral instrumentation in Transforaminal lumbar Interbody fusion: a meta-analysis. Spine J 15(10). https://doi.org/10.1016/j.spinee.2015.07.251

  • Choi U, Park J (2013) Unilateral versus bilateral percutaneous pedicle screw fixation in minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus 35(2):1–8

    Article  Google Scholar 

  • Choy W, Barrington N, Garcia R, Kim R, Rodriguez H, Lam S, Dahdaleh N, Smith Z (2017) Risk factors for medical and surgical complications following single-level ALIF. Global Spine J 7(2):141–147

    Article  Google Scholar 

  • Churches A, Howlett C, Waldron K, Ward G (1979) The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech 12:35–45

    Article  CAS  Google Scholar 

  • Cohen S, Raja S (2007) Pathogenesis, diagnosis, and treatment of lumbar Zygapophysial (facet) joint pain. Anesthesiology 106:591–614

    Article  Google Scholar 

  • Connolly P, Esses S (1996) Anterior cervical fusion: outcome analysis of patients fused with and without anterior cervical plates. J Spinal Discord 9(3):202–206

    CAS  Google Scholar 

  • Ding W, Chen Y (2014) Comparison of unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis. Eur Spine J 23:395–403

    Article  Google Scholar 

  • El Saman A, Meier S, Sander A, Kelm A, Marzi I, Laurer H (2013) Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg 39:455–460

    Article  Google Scholar 

  • Frost H (1994) Wolff’s law and Bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64(3):175–188

    CAS  PubMed  Google Scholar 

  • Gercek E, Arlet V, Delisle J, Marchesi D (2003) Subsidence of stand-alone cervical cages in anterior interbody fusion: warning. Eur Spine J 12:513–516

    Article  Google Scholar 

  • Godzik J, Martinez-Del-Campo E, Newcomb A, Reis M, Perez-Orribo L, Whiting A, Singh V, Kelly B, Crawford N (2018) Biomechanical stability afforded by unilateral versus bilateral pedicle screw fixation with and without Interbody support using lateral lumbar Interbody fusion. World Neurosurg 113. https://doi.org/10.1016/j.wneu.2018.02.053

  • Hakalo J, Pezowicz C, Wronski J, Bedzinski R, Kasprowicz M (2008) Comparative biomechanical study of cervical spine stabilization by cage alone, cage with plate, or plate-cage: a porcine model. J Orthop Surg 16(1):9–13

    Article  CAS  Google Scholar 

  • Kaiser M, Haid R (2002) Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. J Neurosurg 2(1):229–238

    Google Scholar 

  • Kasukawa Y, Miyakoshi N, Hongo M, Ishikawa Y, Kudo D, Shimada Y (2015) Short-term results of Transforaminal lumbar Interbody fusion using pedicle screw with cortical bone trajectory compared with conventional trajectory. Asian Spine J 9(3):440–448. https://doi.org/10.4184/asj.2015.9.3.440

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunder S, Rijkers K, Caelers I, Bie R, Koehler P, Santbrink H (2018) Lumbar Interbody fusion, a historical overview and a future perspective. Spine 1. https://doi.org/10.1097/brs.0000000000002534

  • Lavelle M, Mclain R, Rufo-Smith C, Gurd D (2014) Prospective randomized controlled trial of the Stabilis stand alone cage (SAC) versus Bagby and Kuslich (BAK) implants for anterior lumbar interbody fusion. Int J Spine Surg 8(8). https://doi.org/10.14444/1008

  • Li H, Min J, Zhang Q, Yuan Y, Wang D (2013) Dynamic cervical plate versus static cervical plate in the anterior cervical discectomy and fusion: a systematic review. Eur J Orthop Surg Traumatol 23:41–46

    Article  Google Scholar 

  • Liu F, Feng Z, Liu T, Fei Q, Jiang C, Li Y, … Dong J (2016) A biomechanical comparison of 3 different posterior fixation techniques for 2-level lumbar spinal disorders. J Neurosurg:375–380. https://doi.org/10.3171/2015.7.SPINE1534

  • Matsukawa K, Yato Y, Hynes R, Imabayashi H, Hosogane N, Asazuma T, Matsui T, Kobayashi Y, Nemoto K (2017) Cortical bone trajectory for thoracic pedicle screws: a technical note. Clin Spine Surg 30(5):497–504. https://doi.org/10.1097/BSD.0000000000000130

    Article  Google Scholar 

  • Mica M, Voronov L, Carandang G, Havey R, Wojewnik B, Patwardhan A (2017) Biomechanics of an expandable lumbar Interbody fusion cage deployed through Transforaminal approach biomechanics of an expandable lumbar Interbody fusion cage deployed through Transforaminal approach. Int J Spine Surg 11(4):193–200. https://doi.org/10.14444/4024

    Article  Google Scholar 

  • Mizuno M, Kuraishi K, Umeda Y, Sano T, Tsuji M, Suzuki H (2014) Midline lumbar fusion with cortical bone trajectory screw. Neurol Med Chir 54:716–721. https://doi.org/10.2176/nmc.st.2013-0395

    Article  Google Scholar 

  • Mobbs R, Phan K, Malham G, Seex K, Rao P (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1(1). https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

  • Moftakhar R, Trost G (2004) Anterior cervical plates: a historical perspective. J Neurosurg 16(1):1–5

    Google Scholar 

  • Molinari RW, Saleh A, Molinari R, Hermsmeyer J, Dettori JR (2015) Unilateral versus bilateral instrumentation in spinal surgery: a systematic review. Glob Spine J 5(3):185–194. https://doi.org/10.1055/s-0035-1552986

    Article  Google Scholar 

  • Mulholland R (1994) Pedicle screw fixation in the spine. J Bone Joint Surg 76(4):517–519

    Article  CAS  Google Scholar 

  • Niemeyer T, Koriller M, Claes L, Kettler A, Werner K, Wilke H (2006) In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques. Neurosurgery 59(6):1271–1277. https://doi.org/10.1227/01.neu.0000245609.01732.e4

    Article  PubMed  Google Scholar 

  • Nunley P, Jawahar A, Kerr E, Cavanaugh D, Howard C, Brandao S (2013) Choice of plate may affect outcomes for single versus multilevel ACDF: results of a prospective randomized single-blind trial. Spine J 9(2):121–127

    Article  Google Scholar 

  • Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5(4):390–396

    Article  CAS  Google Scholar 

  • Peterson J, Chlebek C, Clough A, Wells A, Batzinger K, Houston J, Kradinova K, Glennon J, DiRisio D, Ledet E (2018a) Stiffness matters: part II – the effects of plate stiffness on load-sharing and the progression of fusion following ACDF in vivo. Spine. https://doi.org/10.1097/BRS.0000000000002644

  • Peterson J, Chlebek C, Clough A, Wells A, Ledet E (2018b) Stiffness matters: part I – the effects of plate stiffness on the biomechanics of ACDF in vitro. Spine. https://doi.org/10.1097/BRS.0000000000002643

  • Phan K, Thayaparan G, Mobbs R (2015) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion – systematic review and meta-analysis. Br J Neurosurg 29(5):705–711. https://doi.org/10.3109/02688697.2015.1036838

    Article  PubMed  Google Scholar 

  • Rubin C, Lanyon L (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    Article  CAS  Google Scholar 

  • Santoni B, Hynes R, McGilvray K, Rodriguez-Canessa G, Lyons A, Henson M, Womack W, Puttlitz C (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9(5):366–373

    Article  CAS  Google Scholar 

  • Saphier P, Arginteanu M (2007) Stress-shielding compared with load-sharing anterior cervical plate fixation: a clinical and radiographic prospective analysis of 50 patients. J Neurosurg Spine 6(5):391–397

    Article  Google Scholar 

  • Sasso R, Kitchel S, Dawson E (2004) A prospective, randomized controlled clinical trial of anterior lumbar Interbody fusion using a titanium cylindrical threaded fusion device. Spine 29(2):113–122

    Article  Google Scholar 

  • Sulaiman W, Singh M (2014) Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis grades 1–2: patient-reported clinical outcomes and cost-utility analysis. Ochsner J 14(1):32–37

    PubMed  PubMed Central  Google Scholar 

  • Takenaka S, Mukai Y, Tateishi K, Hosono N, Fuji T, Kaito T (2017) Clinical outcomes after posterior lumbar Interbody fusion: comparison of cortical bone trajectory and conventional pedicle screw insertion. Clin Spine Surg 30(10):E1411–E1418. https://doi.org/10.1097/BSD.0000000000000514

    Article  PubMed  Google Scholar 

  • Tormenti M, Maserati M, Bonfield C, Gerszten P, Moossy J, Kanter A, Sprio R, Okonkwo D (2012) Perioperative surgical complications of transforaminal lumbar interbody fusion: a single-center experience. J Neurosurg Spine 16(1):44–50. https://doi.org/10.3171/2011.9.spine11373

    Article  PubMed  Google Scholar 

  • Tstantrizos A, Andreou A, Aebi M, Steffen T (2000) Biomechanical stability of five stand-alone anterior lumbar Interbody fusion constructs. Eur Spine J 9:14–22

    Article  Google Scholar 

  • Wang J, McDonough P (1999) The effect of cervical plating on single-level anterior cervical discectomy and fusion. J Spinal Discord 12(6):467–471

    CAS  Google Scholar 

  • Wang J, McDonough P (2001) Increased fusion rates with cervical plating for three-level anterior cervical discectomy and fusion. J Spine 26(6):643–646

    Article  CAS  Google Scholar 

  • Watkins RG, Hanna R, Chang D, Watkins R (2014) Sagittal alignment after lumbar Interbody fusion. J Spinal Disord Tech 27(5):253–256. https://doi.org/10.1097/bsd.0b013e31828a8447

    Article  PubMed  Google Scholar 

  • Wong A, Smith Z, Nixon A, Lawton C, Dahdaleh N, Wong R, Auffinger B, Lam S, Song J, Liu J, Koski T, Fessler R (2015) Intraoperative and perioperative complications in minimally invasive transforaminal lumbar interbody fusion: a review of 513 patients. J Neurosurg Spine 22(5):487–495. https://doi.org/10.3171/2014.10.spine14129

    Article  PubMed  Google Scholar 

  • Wray S, Mimran R, Vadapalli S, Shetye SS, McGilvray KC, Puttlitz CM (2015) Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine 22:503–510

    Article  Google Scholar 

  • Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y (2014) A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord 15(1). https://doi.org/10.1186/1471-2474-15-367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Swink .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Swink, I. et al. (2020). Lessons Learned from Positive Biomechanics and Positive Clinical Outcomes. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics