Skip to main content

The AFLOW Fleet for Materials Discovery

Handbook of Materials Modeling

Abstract

The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data-driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first-principles calculations and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermomechanical properties, and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.8 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agapito LA, Ferretti A, Calzolari A, Curtarolo S, Buongiorno Nardelli M (2013) Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Phys Rev B 88:165127

    Article  ADS  Google Scholar 

  • Agapito LA, Curtarolo S, Buongiorno Nardelli M (2015) Reformulation of DFT + U as a pseudohybrid Hubbard density functional for accelerated materials discovery. Phys Rev X 5:011006

    Google Scholar 

  • Agapito LA, Fornari M, Ceresoli D, Ferretti A, Curtarolo S, Buongiorno Nardelli M (2016a) Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Phys Rev B 93:125137

    Article  ADS  Google Scholar 

  • Agapito LA, Ismail-Beigi S, Curtarolo S, Fornari M, Buongiorno Nardelli M (2016b) Accurate tight-binding Hamiltonian matrices from ab initio calculations: minimal basis sets. Phys Rev B 93:035104

    Article  ADS  Google Scholar 

  • Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A (2015) Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17:31371–31396

    Article  Google Scholar 

  • Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66

    Article  Google Scholar 

  • Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Soft 22:469–483

    Article  MathSciNet  Google Scholar 

  • Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263

    Article  Google Scholar 

  • Barzilai S, Toher C, Curtarolo S, Levy O (2017a) The effect of lattice stability determination on the computational phase diagrams of intermetallic alloys. J Alloys Compd 728:314–321

    Article  Google Scholar 

  • Barzilai S, Toher C, Curtarolo S, Levy O (2017b) Molybdenum-titanium phase diagram evaluated from ab initio calculations. Phys Rev Mater 1:023604

    Article  Google Scholar 

  • Bergerhoff G, Hundt R, Sievers R, Brown ID (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci 23:66–69

    Article  Google Scholar 

  • Blanco MA, Martín-Pendás A, Francisco E, Recio JM, Franco R (1996) Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J Mol Struct Theochem 368:245–255

    Article  Google Scholar 

  • Blanco MA, Francisco E, Luaña V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158:57–72

    Article  ADS  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  ADS  Google Scholar 

  • Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180:2175–2196

    Article  ADS  Google Scholar 

  • Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart GLW, Buongiorno Nardelli M, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108 Part A:233–238

    Article  Google Scholar 

  • Curtarolo S, Setyawan W, Hart GLW, Jahnátek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012a) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226

    Article  Google Scholar 

  • Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno Nardelli M, Mingo N, Levy O (2012b) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58: 227–235

    Article  Google Scholar 

  • Curtarolo S, Hart GLW, Buongiorno Nardelli M, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201

    Article  ADS  Google Scholar 

  • D’Amico P, Agapito LA, Catellani A, Ruini A, Curtarolo S, Fornari M, Buongiorno Nardelli M, Calzolari A (2016) Accurate ab initio tight-binding Hamiltonians: effective tools for electronic transport and optical spectroscopy from first principles. Phys Rev B 94:165166

    Article  ADS  Google Scholar 

  • de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande CK, van der Zwaag S, Plata JJ, Toher C, Curtarolo S, Ceder G, Persson KA, Asta MD (2015) Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2:150009

    Article  Google Scholar 

  • Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of Nickel oxide: an LSDA+ U study. Phys Rev B 57:1505–1509

    Article  ADS  Google Scholar 

  • Elcombe MM, Pryor AW (1970) The lattice dynamics of calcium fluoride. J Phys C Solid State Phys 3:492

    Article  ADS  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio Jr RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys Condens Matter 29:465901

    Article  Google Scholar 

  • Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492

    Article  Google Scholar 

  • Gopal P, Fornari M, Curtarolo S, Agapito LA, Liyanage LSI, Buongiorno Nardelli M (2015) Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional. Phys Rev B 91:245202

    Article  ADS  Google Scholar 

  • Gossett E, Toher C, Oses C, Isayev O, Legrain F, Rose F, Zurek E, Carrete J, Mingo N, Tropsha A, Curtarolo S (2018) AFLOW-ML: a RESTful API for machine-learning predictions of materials properties. Comput Mater Sci 152:134–145. Submitted arxiv.org/1711.10744

    Article  Google Scholar 

  • Hart GLW, Forcade RW (2008) Algorithm for generating derivative structures. Phys Rev B 77:224115

    Article  ADS  Google Scholar 

  • Hicks D, Oses C, Gossett E, Gomez G, Taylor RH, Toher C, Mehl MJ, Levy O, Curtarolo S (2018) AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Cryst A 74:184–203

    Article  MathSciNet  Google Scholar 

  • Isayev O, Fourches D, Muratov EN, Oses C, Rasch K, Tropsha A, Curtarolo S (2015) Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater 27:735–743

    Article  Google Scholar 

  • Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting electronic properties of inorganic crystals. Nat Commun 8:15679

    Article  ADS  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002

    Article  ADS  Google Scholar 

  • Kaiser W, Spitzer WG, Kaiser RH, Howarth LE (1962) Infrared Properties of CaF2, SrF2, and BaF2. Phys Rev 127:1950–1954

    Article  ADS  Google Scholar 

  • Karen VL, Hellenbrandt M (2002) Inorganic crystal structure database: new developments. Acta Cryst A58:c367

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  ADS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  ADS  Google Scholar 

  • Landis DD, Hummelshøj JS, Nestorov S, Greeley J, Dułak M, Bligaard T, Nørskov JK, Jacobsen KW (2012) The computational materials repository. Comput Sci Eng 14:51–57

    Article  Google Scholar 

  • Lederer Y, Toher C, Vecchio KS, Curtarolo S (2018) The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater 159:354–383. Submitted arxiv.org/1711.03426

    Article  Google Scholar 

  • Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How chemical composition alone can predict vibrational free energies and entropies of solids. Chem Mater 29:6220–6227

    Article  Google Scholar 

  • Levy O, Hart GLW, Curtarolo S (2010a) Uncovering compounds by synergy of cluster expansion and high-throughput methods. J Am Chem Soc 132:4830–4833

    Article  Google Scholar 

  • Levy O, Hart GLW, Curtarolo S (2010b) Hafnium binary alloys from experiments and first principles. Acta Mater 58:2887–2897

    Article  Google Scholar 

  • Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2010c) The new face of Rhodium alloys: revealing ordered structures from first principles. J Am Chem Soc 132:833–837

    Article  Google Scholar 

  • Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:R5467–R5470

    Article  ADS  Google Scholar 

  • Maradudin AA, Montroll EW, Weiss GH, Ipatova IP (1971) Theory of lattice dynamics in the harmonic approximation. Academic Press, New York

    Google Scholar 

  • Mehl MJ, Hicks D, Toher C, Levy O, Hanson RM, Hart GLW, Curtarolo S (2017) The AFLOW library of crystallographic prototypes: part 1. Comput Mater Sci 136:S1–S828

    Article  Google Scholar 

  • Buongiorno Nardelli M, Cerasoli FT, Costa M, Curtarolo S, De Gennaro R, Fornari M, Liyanage L, Supka AR, Wang H (2017) PAOFLOW: a utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Comput Mater Sci 143:462–472

    Article  Google Scholar 

  • Nath P, Plata JJ, Usanmaz D, Al Rahal Al Orabi R, Fornari M, Buongiorno Nardelli M, Toher C, Curtarolo S (2016) High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Comput Mater Sci 125:82–91

    Article  Google Scholar 

  • Nath P, Plata JJ, Usanmaz D, Toher C, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity. Scr Mater 129:88–93

    Article  Google Scholar 

  • Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GLW (2017) A computational high-throughput search for new ternary superalloys. Acta Mater 122:438–447

    Article  Google Scholar 

  • Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319

    Article  Google Scholar 

  • Oses C, Gossett E, Hicks D, Rose F, Mehl MJ, Perim E, Takeuchi I, Sanvito S, Scheffler M, Lederer Y, Levy O, Toher C, Curtarolo S (2018, in press) AFLOW-CHULL: Cloud-oriented platform for automonous phase stability analysis. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00393

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  ADS  Google Scholar 

  • Perim E, Lee D, Liu Y, Toher C, Gong P, Li Y, Simmons WN, Levy O, Vlassak JJ, Schroers J, Curtarolo S (2016) Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat Commun 7:12315

    Article  ADS  Google Scholar 

  • Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230

    Article  Google Scholar 

  • Plata JJ, Nath P, Usanmaz D, Carrete J, Toher C, de Jong M, Asta MD, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW-AAPL automatic anharmonic phonon library. NPJ Comput Mater 3:45

    Article  ADS  Google Scholar 

  • Poirier J-P (2000) Introduction to the physics of the earths interior, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Rose F, Toher C, Gossett E, Oses C, Buongiorno Nardelli M, Fornari M, Curtarolo S (2017) AFLUX: the LUX materials search API for the AFLOW data repositories. Comput Mater Sci 137:362–370

    Article  Google Scholar 

  • Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501–1509

    Article  Google Scholar 

  • Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey JMD, Curtarolo S (2017) Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv 3:e1602241

    Article  ADS  Google Scholar 

  • Scheffler M, Draxl C (2014) Computer center of the Max-Planck society, garching. The NoMaD Repository. http://nomad-repository.eu

  • Schmalzl K, Strauch D, Schober H (2003) Lattice-dynamical and ground-state properties of CaF2 studied by inelastic neutron scattering and density-functional methods. Phys Rev B 68:144301

    Article  ADS  Google Scholar 

  • Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci 49:299–312

    Article  Google Scholar 

  • Supka AR, Lyons TE, Liyanage LSI, D’Amico P, Al Rahal Al Orabi R, Mahatara S, Gopal P, Toher C, Ceresoli D, Calzolari A, Curtarolo S, Buongiorno Nardelli M, Fornari M (2017) AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding Hamiltonians. Comput Mater Sci 136:76–84

    Article  Google Scholar 

  • Taylor RH, Rose F, Toher C, Levy O, Yang K, Buongiorno Nardelli M, Curtarolo S (2014) A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comput Mater Sci 93:178–192

    Article  Google Scholar 

  • Toher C, Plata JJ, Levy O, de Jong M, Asta MD, Buongiorno Nardelli M, Curtarolo S (2014) High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Phys Rev B 90:174107

    Article  ADS  Google Scholar 

  • Toher C, Oses C, Plata JJ, Hicks D, Rose F, Levy O, de Jong M, Asta MD, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Phys Rev Mater 1:015401

    Article  Google Scholar 

  • Yang K, Oses C, Curtarolo S (2016) Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem Mater 28:6484–6492

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from DOD-ONR (N00014-13-1-0030, N00014-13-1-0635, N00014-17-1-2090, N00014-16-1-2781, N00014-15-1-2583, N00014-15-1-2266), DOE (DE-AC02-05CH11231, specifically BES Grant # EDCBEE), and the Duke University Center for Materials Genomics. SC acknowledges support by the Alexander von Humboldt-Foundation – Max Planck Society (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany). CO acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGF-1106401. AFLOW calculations were performed at the Duke University Center for Materials Genomics and at the Fulton Supercomputer Lab – Brigham Young University. The authors thank Amir Natan, Matthias Scheffler, Luca Ghiringhelli, Kenneth Vecchio, Don Brenner, and Jon-Paul Maria for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cormac Toher or Stefano Curtarolo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Toher, C. et al. (2018). The AFLOW Fleet for Materials Discovery. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_63-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The AFLOW Fleet for Materials Discovery
    Published:
    07 February 2019

    DOI: https://doi.org/10.1007/978-3-319-42913-7_63-2

  2. Original

    The AFLOW Fleet for Materials Discovery
    Published:
    14 September 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_63-1