Skip to main content

Earth’s Continental Crust

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 416 Accesses

Definition

The continental crust is typically defined as that portion of the outer rocky layer of the Earth that extends vertically from the surface (subaerial or submarine) to the Mohorovicic discontinuity ( or Moho ) and laterally to the slope break on continental shelves (Cogley 1984).

Introduction

The continental crust has an average thickness of around 35 km (Hacker et al. 2015; Huang et al. 2013), considerably thicker than oceanic crust , which averages 6.5 km in thickness (White and Klein 2014). The lower density and greater thickness of the continental crust compared to oceanic crust causes it to ride higher on the mantle; consequently, a large proportion (70% by area) is exposed above sea level. Data for the physical properties of the continental crust are given in Table 1.

Table 1 Physical parameters of different portions of the continental crust

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abers GA, Hacker BR (2016) A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst. doi:10.1002/2015GC006171

    Google Scholar 

  • Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14

    Article  Google Scholar 

  • Allègre CJ, Rousseau D (1984) The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett 67:19–34. doi:10.1016/0012-821X(84)90035-9

    Article  Google Scholar 

  • Anderson AT (1982) Parental basalts in subduction zones: implications for continental evolution. J Geophys Res 87:7047–7060

    Article  Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil Trnas R Soc Lond A 301:443–472

    Article  Google Scholar 

  • Armstrong RL (1991) The persistent myth of crustal growth. Aust J Earth Sci 38:613–630

    Article  Google Scholar 

  • Arndt NT (2013) The formation and evolution of the continental crust. Geochem Perspect 2(3):405–533. doi:10.7185/geochempersp.2.3

    Article  Google Scholar 

  • Arndt N, Davaille A (2013) Episodic Earth evolution. Tectonophysics 609:661–674. doi:10.1016/j.tecto.2013.07.002

    Article  Google Scholar 

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophys 161:201–212

    Article  Google Scholar 

  • Augland LE, David J (2015) Protocrustal evolution of the Nuvvuagittuq Supracrustal Belt as determined by high precision zircon Lu-Hf and U-Pb isotope data. Earth Planet Sci Lett 428:162–171. doi:10.1016/j.epsl.2015.07.039

    Article  Google Scholar 

  • Barth M, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Behn MD, Kelemen PB (2003) The relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem Geophys Geosys 4:1041. doi:10.1029/2002GC000393

    Article  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112(47):14518–14521. doi:10.1073/pnas.1517557112

    Article  Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hfisotope data. Lithos 119:457–466. doi:10.1016/j.lithos.2010.07.024

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134(1):3–16

    Article  Google Scholar 

  • Boyet M, Blichert-Toft J, Rosing MT, Storey M, Telouk P, Albarede F (2003) 142Nd evidence for early Earth diferentiation. Earth Planet Sci Lett 214:427–442. doi:10.1016/S0012-821X(03)00423-0

    Article  Google Scholar 

  • Campbell IH, Allen CM (2008) Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci 1(8):554–558. doi:10.1038/ngeo259

    Article  Google Scholar 

  • Campbell IH, Taylor SR (1985) No water, no granites – no oceans, no continents. Geophys Res Lett 10:1061–1064

    Article  Google Scholar 

  • Canil D, Crockford PW, Rossin R, Telmer K (2015) Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chem Geol 396:134–142. doi:10.1016/j.chemgeo.2014.12.029

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck JL, Moorbath S (2003) Sm-146-Nd-142 evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423(6938):428–432. doi:10.1038/nature01668

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, Northern Quebec. Earth Planet Sci Lett 255(1–2):9–21. doi:10.1016/j.epsl.2006.11.034

    Article  Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bull 125(1–2):14–32. doi:10.1130/b30722.1

    Article  Google Scholar 

  • Chauvel C, Garcon M, Bureau S, Besnault A, Jahn BM, Ding ZL (2014) Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth Planet Sci Lett 388:48–58. doi:10.1016/j.epsl.2013.11.045

    Article  Google Scholar 

  • Chen K, Walker RJ, Rudnick RL, Gao S, Gaschnig RM, Puchtel IS, Tang M, Hu Z-C (2016) Platinum-group element abundances and Re-Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim Cosmochim Acta 191:1–16. doi:10.1016/j.gca.2016.07.004

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Article  Google Scholar 

  • Clift PD, Vannucchi P, Morgan JP (2009) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci Rev 97(1–4):80–104. doi:10.1016/j.earscirev.2009.10.003

    Article  Google Scholar 

  • Cogley JG (1984) Continental margins and the extent and number of the continents. Rev Geophys Space Phys 22:101–122

    Article  Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in western. Aust Nat 321(6072):766–769. doi:10.1038/321766a0

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results form surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163(1–4):97–108. doi:10.1016/s0012-821x(98)00178-2

    Article  Google Scholar 

  • Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180(3–4):227–236. doi:10.1016/j.precamres.2010.03.008

    Article  Google Scholar 

  • Condie KC, Belousova E, Griffin WL, Sircombe KN (2009) Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res 15(3–4):228–242. doi:10.1016/j.gr.2008.06.001

    Article  Google Scholar 

  • Cottle JM, Stearns MA (2017) Application of single shot laser ablation split stream to accessory phase petrochronology. In: Macrostructural geochronology; lattice to atom-scale records of planetary evolution. American Geophysical Union Monograph, Washington, DC

    Google Scholar 

  • Cottrell RD, Tarduno JA, Bono RK, Dare MS, Mitra G (2016) The inverse microconglomerate test: further evidence for the preservation of Hadean magnetizations in metasediments of the Jack Hills, Western Australia. Geophys Res Lett 43(9):4215–4220. doi:10.1002/2016gl068150

    Article  Google Scholar 

  • Darling J, Storey C, Hawkesworth C (2009) Impact melt sheet zircons and their implications for the Hadean crust. Geology 37(10):927–930. doi:10.1130/g30251a.1

    Article  Google Scholar 

  • David J, Godin L, Stevenson R, O’Neil J, Francis D (2009) U-Pb ages (3.8-2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, superior Craton, Canada. Geol Soc Am Bull 121(1–2):150–163. doi:10.1130/b26369.1

    Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335(6074):1334–1336. doi:10.1126/science.1216066

    Article  Google Scholar 

  • Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nat Geosci 8(7):552–555. doi:10.1038/ngeo2466

    Article  Google Scholar 

  • Ducea MN (2002) Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J Geophys Res-Solid Earth 107(B11)

    Google Scholar 

  • Eade KE, Fahrig WF (1971) Chemical evolutionary trends of continental plates – a preliminary study of the Canadian Sheild. Canadian Geological Survey, Ottawa

    Google Scholar 

  • Eade KE, Fahrig WF (1973) Regional, lithological, and temporal variation in the abundances of some trace elements in the Canadian Shield. Canadian Geological Survey, Ottawa

    Google Scholar 

  • Eichelberger JC (1975) Origin of andesite and dacite – evidence of mixing of magmas at Glass Mountain in California and at other circum-Pacific volcanoes. Geol Soc Am Bull 86(10):1381–1391. doi:10.1130/0016-7606(1975)86<1381:ooaade>2.0.co;2

    Article  Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, Geophysical monograph, vol 138. American Geophysical Union, Washington, DC, pp 23–45

    Chapter  Google Scholar 

  • Fahrig WF, Eade KE (1968) The chemical evolution of the Canadian Shield. Geochim Cosmochim Acta 5:1247–1252

    Google Scholar 

  • Fegley B (2014) Venus. In: Davis AM (ed) Planets, asteroids, comets and the solar system, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 127–148

    Google Scholar 

  • Fisher CM, Vervoort JD, DuFrane SA (2014) Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochem Geophys Geosyst 15(1):121–139. doi:10.1002/2013gc004962

    Article  Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion micropre identification of 4,11-4,200 Myr-old terrestiral zircons. Nature 304(5927):616–618. doi:10.1038/304616a0

    Article  Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156(2):197–215. doi:10.1007/s00410-008-0281-5

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Hu Y-K, Zhao Z-D (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Gaschnig RM, Rudnick RL, McDonough WF, Kaufman AJ, Valley JW, Hu Z-C, Gao S, Beck ML (2016) Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochim Cosmochim Acta 186:316–343

    Article  Google Scholar 

  • Goldschmidt VM (1933) Grundlagen der quantitativen Geochemie. Fortschr Mienral Kirst Petrog 17:112

    Google Scholar 

  • Goldstein SL (1989) Decoupled evolution of Nd and Sr isotopes in the continental crust and the mantle. Nature 336:733–738

    Article  Google Scholar 

  • Goodwin AM (1996) Principles of Precambrian geology. Academic, London

    Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghoj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646. doi:10.1130/g23603a.1

    Article  Google Scholar 

  • Gurnis M, Davies GF (1986) Apparent episodic crustal growth arising from a smoothly evolving mantle. Geology 14:396–399

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307(3–4):501–516. doi:10.1016/j.epsl.2011.05.024

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2015) Continental lower crust. In: Jeanloz R, Freeman KH (eds) Annu Rev Earth Planet Sci 43:167–205

    Google Scholar 

  • Harper CL, Jacobsen SB (1992) Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5 Gyr) differentiation of the Earth’s mantle. Nature 360:728–732

    Article  Google Scholar 

  • Harrison TM (2009) The Hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505. doi:10.1146/annurev.earth.031208.100151

    Article  Google Scholar 

  • Haskin MA, Haskin LA (1966) Rare earths in European shales: a redetermination. Science 154:507–509

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443(7113):811–817. doi:10.1038/nature05191

    Article  Google Scholar 

  • Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc 167(2):229–248. doi:10.1144/0016-76492009-072

    Article  Google Scholar 

  • Hawkesworth C, Cawood P, Dhuime B (2013) Continental growth and the crustal record. Tectonophysics 609:651–660. doi:10.1016/j.tecto.2013.08.013

    Article  Google Scholar 

  • Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Article  Google Scholar 

  • Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456(7221):493–496. doi:10.1038/nature07465

    Article  Google Scholar 

  • Hu ZC, Gao S (2008) Upper crustal abundances of trace elements: revision and update. Chemi Geol 253(3–4):205–221. doi:10.1016/j.chemgeo.2008.05.010

    Article  Google Scholar 

  • Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF (2013) A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem Geophys Geosyst 14(6):2003–2029. doi:10.1002/ggge.20129

    Article  Google Scholar 

  • Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164:1229–1242

    Article  Google Scholar 

  • Jagoutz O, Schmidt MW (2013) The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet Sci Lett 371:177–190. doi:10.1016/j.epsl.2013.03.051

    Article  Google Scholar 

  • Jaupart C, Mareschal J-C (2014) Constraints on crustal heat production from heat flow data. In: Rudnick RL (ed) The crust, Treatise on geochemistry, vol 4. Elsevier, Oxford, pp 53–72

    Google Scholar 

  • Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth-Sci Rev 148:150–173. doi:10.1016/j.earscirev.2015.05.006

    Article  Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res 106(4):6423–6446

    Article  Google Scholar 

  • Kamber BS (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean atmosphere chemistry. Chem Geol 274(1–2):19–28. doi:10.1016/j.chemgeo.2010.03.009

    Article  Google Scholar 

  • Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta 69(4):1041–1058. doi:10.1016/j.gca.2004.08.020

    Article  Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  Google Scholar 

  • Kelemen PB, Behn MD (2016) Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat Geosci 9:197–205. doi:10.1038/NGEO2662

    Article  Google Scholar 

  • Kelemen PB et al (2003a) Along-strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. In: Eiler J (ed) Inside the subduction factory, AGU monograph, vol 138. Washington, DC, pp 293–311

    Google Scholar 

  • Kelemen PB, Hanghoj K, Greene A (2003b) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 593–659

    Google Scholar 

  • Keller CB, Schoene B (2012) Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485(7399):490–493. doi:10.1038/nature11024

    Article  Google Scholar 

  • Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523(7560):301–307. doi:10.1038/nature14584

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ (2014) Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 379–421

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439(7076):580–583

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296(1–2):45–56. doi:10.1016/j.epsl.2010.04.043

    Article  Google Scholar 

  • Kemp AIS, Hickman AH, Kirkland CL, Vervoort JD (2015) Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precambrian Res 261:112–126. doi:10.1016/j.precamres.2015.02.011

    Article  Google Scholar 

  • Kenny GG, Whitehouse MJ, Kamber BS (2016) Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44(6):435–438. doi:10.1130/g37898.1

    Article  Google Scholar 

  • Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3(9):631–636. doi:10.1038/ngeo924

    Article  Google Scholar 

  • König S, Munker C, Hohl S, Paulick H, Barth AR, Lagos M, Pfander J, Buchl A (2011) The Earth's tungsten budget during mantle melting and crust formation. Geochim Cosmochim Acta 75(8):2119–2136. doi:10.1016/j.gca.2011.01.031

    Article  Google Scholar 

  • Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112. doi:10.1016/j.chemgeo.2013.02.019

    Article  Google Scholar 

  • Lee CTA (2014) Physics and chemistry of deep continental crust recycling. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 423–456

    Google Scholar 

  • Lee C-TA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274. doi:10.1016/j.epsl.2014.02.044

    Article  Google Scholar 

  • Lee CTA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263(3–4):370–387

    Article  Google Scholar 

  • Lee CTA, Morton DM, Little MG, Kistler R, Horodyskyj UN, Leeman WP, Agranier A (2008) Regulating continent growth and composition by chemical weathering. Proc Natl Acad Sci U S A 105(13):4981–4986

    Article  Google Scholar 

  • Lee CTA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A (2016) Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci 9(6):417–424. doi:10.1038/ngeo2707

    Article  Google Scholar 

  • Li S, Gaschnig RM, Rudnick RL (2016) Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochim Cosmochim Acta 176:96–117. doi:10.1016/j.gea.2015.12.012

    Article  Google Scholar 

  • Liu X-M, Rudnick RL (2011) Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci U S A 108(52):20873–20880. doi:10.1073/pnas.1115671108

    Article  Google Scholar 

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust – a geochronological and geochemical study of the 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta 56(3):1281–1300. doi:10.1016/0016-7037(92)90062-n

    Article  Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Article  Google Scholar 

  • Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30(4):319–322

    Article  Google Scholar 

  • McCoy TJ, Nittler LR (2014) Mercury. In: Davis AM (ed) Meteorites, comets and planets, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 119–126

    Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:art. no.-2000GC000109

    Google Scholar 

  • McLennan SM, Taylor SR (1980) Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285:621–624

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary-rocks and crustal evolution – tectonic setting and secular trends. J Geol 99(1):1–21

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1996) Heat flow and the chemical composition of continental crust. J Geol 104:396–377

    Article  Google Scholar 

  • McSween HY Jr, McLennan SM (2014) Mars. In: Davis AM (ed) Meteorites, comets and planets, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 251–300

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409(6817):178–181. doi:10.1038/35051557

    Article  Google Scholar 

  • Moorbath S, Gale NH, Pankhurst RJ, McGregor VR, Onions RK (1972) Further rubidium-strontium age determinations on very early Precambrian rocks of Godthaab district, West Greenland. Nat Phys Sci 240(100):78–82

    Article  Google Scholar 

  • Moorbath S, Onions RK, Pankhurst RJ (1973) Early Archaean age for Isua iron formation, West Greenland. Nature 245(5421):138–139. doi:10.1038/245138a0

    Article  Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth’s crust. Chem Geol 147(3–4):201–216. doi:10.1016/s0009-2541(98)00013-8

    Article  Google Scholar 

  • Nance WB, Taylor SR (1976) Rare-Earth element patterns and crustal evolution. 1. Australian post-Archean sedimentary-rocks. Geochim Cosmochim Acta 40(12):1539–1551. doi:10.1016/0016-7037(76)90093-4

    Article  Google Scholar 

  • Nance WB, Taylor SR (1977) Rare-Earth element patterns and crustal evolution. 2. Archean sedimentary-rocks from Kalgoorlie, Australia. Geochim Cosmochim Acta 41(2):225–231. doi:10.1016/0016-7037(77)90229-0

    Article  Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss Complex of southern west Greenland; the world’s most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Res 78(1–3):1–39. doi:10.1016/0301-9268(95)00066-6

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Rosing MT (1997) ~ 3710 and >3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem Geol 141(3–4):271–287. doi:10.1016/s0009-2541(97)00084-3

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. doi:10.1038/nature19355

    Google Scholar 

  • O’Neil J, Carlson RW (2017) Building Archean cratons from Hadean mafic crust. Science 355:1199–1202

    Article  Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for hadean mafic crust. Science 321(5897):1828–1831. doi:10.1126/science.1161925

    Article  Google Scholar 

  • O’Neil J, Rizo H, Boyet M, Carlson RW, Rosing MT (2016) Geochemistry and Nd isotopic characteristics of Earth’s Hadean mantle and primitive crust. Earth Planet Sci Lett 442:194–205. doi:10.1016/j.epsl.2016.02.055

    Article  Google Scholar 

  • Park JW, Hu ZC, Gao S, Campbell IH, Gong HJ (2012) Platinum group element abundances in the upper continental crust revisited – new constraints from analyses of Chinese loess. Geochim Cosmochim Acta 93:63–76. doi:10.1016/j.gca.2012.06.026

    Article  Google Scholar 

  • Parman SW (2015) Time-lapse zirconography: imaging punctuated continental evolution. Geochem Perspect Lett 1:43–52. doi:10.7185/geochemlet.1505

    Article  Google Scholar 

  • Pasyanos ME, Masters TG, Laske G, Ma ZT (2014) LITHO1.0: an updated crust and lithospheric model of the earth. J Geophys ResSolid Earth 119(3):2153–2173. doi:10.1002/2013jb010626

    Article  Google Scholar 

  • Payne JL, McInerney DJ, Barovich KM, Kirkland CL, Pearson NJ, Hand M (2016) Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos 248:175–192. doi:10.1016/j.lithos.2015.12.015

    Article  Google Scholar 

  • Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449(7159):202–205. doi:10.1038/nature06122

    Article  Google Scholar 

  • Peucker-Ehrenbrink B, Jahn B-M (2001) Rhenium-osmium isotope systematics and platinum group element concentations: loess and the upper continental crust. Geochem Geophys Geosyst 2:2001GC000172

    Article  Google Scholar 

  • Plank T (2005) Constraints from Th/La on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM, Sarkar C, Schaltegger U, Creaser RA, Pearson DG (2016) No evicence for Hadean continental crust within Earth’s oldest evovled rock unit. Nat Geosci. doi:10.1038/ngeo2786

    Google Scholar 

  • Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461(7268):1269–1273. doi:10.1038/nature08510

    Article  Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing MT, Paquette JL (2012) The elusive Hadean enriched reservoir revealed by Nd-142 deficits in Isua Archaean rocks. Nature 491(7422):96–U109. doi:10.1038/nature11565

    Article  Google Scholar 

  • Rollinson H (2008) Secular evolution of the continental crust: implications for crust evolution models. Geochem Geophys Geosyst 9. doi:10.1029/2008gc002262

    Google Scholar 

  • Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited Nd-142 anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57. doi:10.1016/j.epsl.2012.11.023

    Article  Google Scholar 

  • Roth ASG, Bourdon B, Mojzsis SJ, Rudge JF, Guitreau M, Blichert-Toft J (2014) Combined Sm-147,Sm-146-Nd-143,Nd-142 constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst 15(6):2329–2345. doi:10.1002/2014gc005313

    Article  Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust, vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Sauzéat L, Rudnick RL, Chauvel C, Garçon M, Tang M (2015) New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet Sci Lett 428:181–192. doi:10.1016/j.epsl.2015.07.032

    Article  Google Scholar 

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293(5530):683–687. doi:10.1126/science.1061372

    Article  Google Scholar 

  • Scherer EE, Whitehouse MJ, Munker C (2007) Zircon as a monitor of crustal growth. Elements 3(1):19–24. doi:10.2113/gselements.3.1.19

    Article  Google Scholar 

  • Schoene B (2014) U-Pb geochronology. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 341–378

    Google Scholar 

  • Shaw DM, Reilly GA, Muysson JR, Pattenden GE, Campbell FE (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Can J Earth Sci 4:829–853

    Article  Google Scholar 

  • Shaw DM, Dostal J, Keays RR (1976) Additional estimates of continental surface Precambrian shield composition in Canada. Geochim Cosmochim Acta 40:73–83

    Article  Google Scholar 

  • Shaw DM, Cramer JJ, Higgins MD, Truscott MG (1986) Composition of the Canadian Precambrian shield and the continental crust of the earth. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust, vol 24. Geol Soc London, London, pp 257–282

    Google Scholar 

  • Shaw DM, Dickin AP, Li H, McNutt RH, Schwarcz HP, Truscott MG (1994) Crustal geochemistry in the Wawa-Foleyet region, Ontario. Can J Earth Sci 31(7):1104–1121

    Article  Google Scholar 

  • Simon L, Lecuyer C (2005) Continental recycling: the oxygen isotope point of view. Geochem Geophys Geosyst 6:Q08004. doi:10.1029/2005GC000958

    Article  Google Scholar 

  • Söderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324. doi:10.1016/s0012-821x(04)00012-3

    Article  Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Article  Google Scholar 

  • Tang M, Rudnick RL, McDonough WF, Gaschnig RM, Huang Y (2015) Europium anomalies constrain the mass of recycled lower continental crust. Geology 43(8):703–706. doi:10.1130/g36641.1

    Article  Google Scholar 

  • Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351(6271):372–375. doi:10.1126/science.aad5513

    Article  Google Scholar 

  • Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349(6247):521–524. doi:10.1126/science.aaa9114

    Article  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust – a new table. Geochim Cosmochim Acta 28:1273–1285

    Article  Google Scholar 

  • Taylor SR (1977) Island arc models and the composition of the continental crust. In: Talwani M, Pitmann WC III (eds) Island arcs, deep sea trenches and back-arc basins, vol 1. American Geophysical Union, Washington, DC, pp 325–336

    Chapter  Google Scholar 

  • Taylor SR, McLennan S (1985) The continenal crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Taylor SR, McLennan SM (2009) Planetary crusts their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor SR, McLennan SM, McCulloch MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim Cosmochim Acta 47:1897–1905

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Dalpe C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68(20):4167–4178

    Article  Google Scholar 

  • Teng FZ, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu YS (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255(1–2):47–59. doi:10.1016/j.chemgeo.2008.06.009

    Article  Google Scholar 

  • Togashi S, Imai N, Okuyama-Kusunose Y, Tanaka T, Okai T, Koma T, Murata Y (2000) Young upper crustal chemical composition of the orogenic Japan arc. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000083

    Google Scholar 

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys ResSolid Earth 116. doi:10.1029/2010jb007922

    Google Scholar 

  • Veizer J, Compston W (1976) SR-87-SR-86 in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40(8):905–914. doi:10.1016/0016-7037(76)90139-3

    Article  Google Scholar 

  • Vervoort JD, Kemp AIS (2016) Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem Geol 425:65–75. doi:10.1016/j.chemgeo.2016.01.023

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Gehrels GE, Nutman AP (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379(6566):624–627. doi:10.1038/379624a0

    Article  Google Scholar 

  • Voice PJ, Kowalewski M, Eriksson KA (2011) Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J Geol 119(2):109–126. doi:10.1086/658295

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308(5723):841–844. doi:10.1126/science.1110873

    Article  Google Scholar 

  • Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577

    Article  Google Scholar 

  • Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Weiss BP, Maloof AC, Tailby N, Ramezani J, Fu RR, Hanus V, Trail D, Watson EB, Harrison TM, Bowring SA, Kirschvink JL, Swanson-Hysell NL, Coe RS (2015) Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo. Earth Planet Sci Lett 430:115–128. doi:10.1016/j.epsl.2015.07.067

    Article  Google Scholar 

  • White WM, Klein EM (2014) Composition of the oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Oxford, pp 457–495

    Chapter  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature 409(6817):175–178

    Article  Google Scholar 

  • Willbold M, Hegner E, Stracke A, Rocholl A (2009) Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett 279(1–2):44–52. doi:10.1016/j.epsl.2008.12.029

    Article  Google Scholar 

  • Yanagi T, Yamashita K (1994) Genesis of continental-crust under island-arc conditions. Lithos 33(1–3):209–223. doi:10.1016/0024-4937(94)90061-2

    Article  Google Scholar 

  • Yuan HL, Gao S, Dai MN, Zong CL, Gunther D, Fontaine GH, Liu XM, Diwu C (2008) Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol 247(1–2):100–118. doi:10.1016/j.chemgeo.2007.10.003

    Article  Google Scholar 

Download references

Acknowledgments

Peter van Keken, Gray Bebout, Ralf Halama, and Sujoy Mukhopadhyay all provided help in tracking down compositional estimates for the continental crust or other data. John Cottle kindly provided the beautiful zircon images in Figure 5. Mike Free, Allison Greaney, and Ming Tang provided comments that helped me to clarify different parts of the original manuscript. I appreciate review comments from Kent Condie, Bruno Dhuime, Brad Hacker, Chris Hawkesworth, and Scott McLennan. I am grateful for support of my research from the National Science Foundation over the past two decades. Finally, I thank Bill White for being exceedingly patient while the writing of this entry was delayed due to my move across a continent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta L. Rudnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Rudnick, R.L. (2017). Earth’s Continental Crust. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_277-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_277-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics