Skip to main content

Lumbar Interbody Fusion Devices and Approaches: When to Use What

  • Living reference work entry
  • First Online:
Handbook of Spine Technology
  • 158 Accesses

Abstract

Lumbar interbody fusion is an established surgical technique for a variety of conditions affecting the lumbar spine. A large number of interbody fusion devices made of differing materials are now available for use. Approaches for interbody fusion include anterior lumbar interbody fusion, oblique lumbar interbody fusion, lateral lumbar interbody fusion, axial lumbar interbody fusion, transforaminal lumbar interbody fusion, and posterior lumbar interbody fusion. This chapter discusses the biomechanics of lumbar interbody fusion devices and approaches and the clinical rationale and the clinical results of each approach. The advantages and disadvantages of each approach are compared and contrasted. The importance of an appropriate preoperative assessment to determine the best approach for interbody fusion is emphasized, taking into account the condition being treated, sagittal balance, bone quality, and contraindications to a specific approach. The best approach to lumbar interbody fusion by indication and surgical level(s) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmadian A, Verma S, Mundis G et al (2013) Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4-5 spondylolisthesis: clinical outcomes. J Neurosurg Spine 19:314–320

    Article  PubMed  Google Scholar 

  • Ahmadian A, Bach K, Bolinger B et al (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci 22: 740–746

    Article  PubMed  Google Scholar 

  • Akesen B, Wu C, Mehbod A, Transfeldt E (2008) Biomechanical evaluation of paracoccygeal transsacral fixation. J Spinal Disord Tech 21:39–44

    Article  PubMed  Google Scholar 

  • Allain J, Delecrin J, Beaurain J et al (2014) Stand-alone ALIF with integrated intracorporeal anchoring plates in the treatment of degenerative lumbar disc disease: a prospective study of 65 cases. Eur Spine J 23: 2136–2143

    Article  PubMed  Google Scholar 

  • Ames C, Acosta F, Chi J et al (2005) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels. Spine 30:E562–E566

    Article  PubMed  Google Scholar 

  • Anand N, Baron E, Khandehroo B, Kahwaty S (2013) Long-term 2- to 5-year clinical and functional outcomes of minimally invasive surgery for adult scoliosis. Spine 38:1566–1575

    Article  PubMed  Google Scholar 

  • Anderson D, Sayadipour A, Shelby K et al (2011) Anterior interbody arthrodesis with percutaneous posteror pedicle fixation for degenerative conditions of the lumbar spine. Eur Spine J 20:1323–1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold P, Anderson K, McGuire R (2012) The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int 3:S198–S215

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagby G (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopaedics 11:931–934

    CAS  Google Scholar 

  • Barnes B, Rodts G, Mclaughlin M, Haid R (2001) Threaded cortical bone dowels for lumbar interbody fusion: over 1-year mean follow-up in 28 patients. J Neurosurg Spine 95:1–4

    Article  CAS  Google Scholar 

  • Barnes B, Rodts G, Haid R et al (2002) Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery 51:1191–1198

    Article  PubMed  Google Scholar 

  • Beaubien B, Derincek A, Lew W et al (2005) In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws. Spine 30:1846–1851

    Article  PubMed  Google Scholar 

  • Berjano P, Cecchinato R, Sinigaglia A et al (2015) Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J 24(3):433–438

    Article  PubMed  Google Scholar 

  • Bevevino A, Kang D, Lehman R et al (2014) Systematic review and meta-analysis of minimally invasive transforaminal lumbar interbody fusion rates performed without posterolateral fusion. J Clin Neurosci 21: 1686–1690

    Article  PubMed  Google Scholar 

  • Bohinski R, Jain V, Tobler W (2010) Presacral retroperitoneal approach to axial lumbar interbody fusion: a new, minimally invasive technique at L5-S1: clinical outcomes, complications, and fusion rates in 50 patients at 1-year follow-up. SAS J 4:54–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley D, Hisey M, Verma-Kurvari S, Ohnmeiss D (2012) Minimally invasive trans-sacral approach to L5-S1 interbody fusion: preliminary results from 1 center and review of the literature. Int J Spine Surg 6:110–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodke D, Dick J, Kunz D et al (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine 22:26–31

    Article  CAS  PubMed  Google Scholar 

  • Burkus J, Heim S, Gornet M, Zdeblick T (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16:113–122

    Article  PubMed  Google Scholar 

  • Burkus J, Gornet M, Schuler T et al (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg 91:1181–1189

    Article  PubMed  Google Scholar 

  • Chen S, Lin S, Tsai W et al (2012) Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – a finite element analysis. BMC Musculoskelet Disord 13:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Chiang M, Lin J et al (2013) Biomechanical comparison of three stand-alone lumbar cages – a three-dimensional finite element analysis. BMC Musculoskelet Disord 14:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Chitnavis B, Barbagallo G, Selway R et al (2001) Posterior lumbar interbody fusion for revision disc surgery: review of 50 cases in which carbon fibre cages were implanted. J Neurosurg Spine 95:190–195

    Article  CAS  Google Scholar 

  • Cloward R (1953) The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. J Neurosurg 10:154–168

    Article  CAS  PubMed  Google Scholar 

  • Costanzo G, Zoccali C, Maykowski P et al (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23:S699–S704

    Article  Google Scholar 

  • Cunningham BW, Polly DW Jr (2002) The use of interbody cage devices for spinal deformity: a biomechanical perspective. Clin Orthop Relat Res 394:73–83

    Article  Google Scholar 

  • Derby R, Howard M, Grant J et al (1999) The ability of pressure-controlled discography to predict surgical and nonsurgical outcomes. Spine 24:364–371

    Article  CAS  PubMed  Google Scholar 

  • Dorward I, Lenke L, Bridwell K et al (2013) Transforaminal versus anterior lumbar interbody fusion in long deformity constructs. Spine 38:E755–E762

    Article  PubMed  Google Scholar 

  • Erkan S, Wu C, Mehbod A et al (2009) Biomechanical evaluation of a new AxiaLIF technique for two-level lumbar fusion. Eur Spine J 18:807–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan S, Hu Z, Fang X et al (2010) Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg 2:194–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Farcy J, Rawlins B, Glassman S (1992) Technique and results of fixation to the sacrum with iliosacral screws. Spine 17:S190–S195

    Article  CAS  PubMed  Google Scholar 

  • Fogel G, Parikh R, Ryu S, Turner A (2014) Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation. J Neurosurg Spine 20:291–297

    Article  PubMed  Google Scholar 

  • Freudenberger C, Lindley E, Beard D et al (2009) Posterior versus anterior lumbar interbody fusion with anterior tension band plating: retrospective analysis. Orthopaedics 32:492–496

    Article  Google Scholar 

  • Fritzell P, Hagg O, Wessberg P et al (2002) Chronic low back pain and fusion: a comparison of three surgical techniques. Spine 27:1131–1141

    Article  PubMed  Google Scholar 

  • Gerber M, Crawford N, Chamberlain R et al (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-along anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine 31:762–768

    Article  PubMed  Google Scholar 

  • Giang G, Mobbs R, Phan S et al (2017) Evaluating outcomes of stand-alone anterior lumbar interbody fusion: a systematic review. World Neurosurg 104:259–271

    Article  PubMed  Google Scholar 

  • Glassman S, Gornet M, Branch C et al (2006) MOS short form 36 and Oswestry Disability Index outcomes in lumbar fusion: a multicenter experience. Spine J 6:21–26

    Article  PubMed  Google Scholar 

  • Goldstein C, Macwan K, Sundarajan K, Rampersaud R (2016) Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine 24:416–427

    Article  PubMed  Google Scholar 

  • Gonzalez-Blohm S, Doulgeris J, Aghayev K et al (2014) In vitro evaluation of a lateral expandable cage and its comparison with a static device for lumbar interbody fusion: a biomechanical investigation. J Neurosurg Spine 20:387–395

    Article  PubMed  Google Scholar 

  • Gornet M, Burkus J, Dryer R, Peloza J (2011) Lumbar disc arthroplasty with Maverick disc versus stand-alone interbody fusion. Spine 36:E1600–E1611

    Article  PubMed  Google Scholar 

  • Grant J, Oxland T, Dvorak M, Fisher C (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg L, Halm H, Bullmann V et al (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J 14:551–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Haid R, Branch C, Alexander J, Burkus J (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4:527–539

    Article  PubMed  Google Scholar 

  • Hioki A, Miyamoto K, Kodama H et al (2005) Two-level posterior lumbar interbody fusion for degenerative disc disease: improved clinical outcome with restoration of lumbar lordosis. Spine J 5:600–607

    Article  PubMed  Google Scholar 

  • Hoff E, Strube P, Pumberger M et al (2016) ALIF and total disc replacement versus 2-level circumferential fusion with TLIF: a prospective, randomized, clinical and radiological trial. Eur Spine J 25:1558–1566

    Article  PubMed  Google Scholar 

  • Hsieh P, Koski T, O’Shaughnessy B et al (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386

    Article  PubMed  Google Scholar 

  • Hsieh C, Lee H, Oh H et al (2017) Anterior lumbar interbody fusion with percutaneous pedicle screw fixation for multiple-level isthmic spondylolisthesis. Clin Neurol Neurosurg 158:49–52

    Article  PubMed  Google Scholar 

  • Humphreys C, Hodges S, Patwardhan A et al (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 26: 567–571

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Chen J, Jiang L (2012) Which procedure is better for lumbar interbody fusion: anterior lumbar interbody fusion or transforaminal lumbar interbody fusion. Arch Orthop Trauma Surg 132:1259–1266

    Article  PubMed  Google Scholar 

  • Joseph J, Smith B, La Marca F, Park P et al (2015) Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39:E4

    Article  PubMed  Google Scholar 

  • Kaleli N, Sarac D, Külünk S et al (2018) Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent 119(3):437–445. https://doi.org/10.1016/j.prosdent.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  • Kanayama M, Cunningham B, Haggerty C et al (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interned fusion devices. J Neurosurg Spine 93:259–265

    Article  CAS  Google Scholar 

  • Kettler A, Wilke H, Diets R et al (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92:87–92

    CAS  PubMed  Google Scholar 

  • Khan N, Clark A, Lee S et al (2015) Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery 77:847–874

    Article  PubMed  Google Scholar 

  • Kim J, Kim D, Lee S et al (2010) Comparison study of the instrumented circumferential fusion with instrumented anterior lumbar interbody fusion as a surgical procedure for adult low-grade isthmic spondylolisthesis. World Neurosurg 73:565–571

    Article  PubMed  Google Scholar 

  • Kim C, Harris J, Muzumdar A et al (2017) The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device. Clin Biomech 43:102–108

    Article  Google Scholar 

  • Kornblum M, Turner A, Cornwall G et al (2013) Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J 13:77–84

    Article  PubMed  Google Scholar 

  • Kostuik J, Hall B (1983) Spinal fusions to the sacrum in adults with scoliosis. Spine 8:489–500

    Article  CAS  PubMed  Google Scholar 

  • Kuslich S, Ulstrom C, Griffith S, Ahern J, Dowdle J (1998) The Baby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicentre trial. Spine 23:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Lammli J, Whitaker C, Moskowitz A et al (2014) Stand-alone anterior lumbar interbody fusion for degenerative disc disease of the lumbar spine. Spine 15:E894–E901

    Article  Google Scholar 

  • Lauber S, Schulte T, Liljenqvist U et al (2006) Clinical and radiologic 2–4 year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine 15:1693–1698

    Article  Google Scholar 

  • Laws C, Coughlin D, Lotz J et al (2012) Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach. Spine 37:819–825

    Article  PubMed  Google Scholar 

  • Ledet E, Tymson M, Salerno S et al (2005) A biomechanical evaluation of a novel lumbosacral axial fixation device. J Biomech Eng 127:929–933

    Article  PubMed  Google Scholar 

  • Lee YC, Zotti MGT, Osti OL (2016) Operative management of lumbar degenerative disc disease. Asian Spine J 10(4):801–819

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee C, Yoon K, Ha S (2017a) Which approach is advantageous to preventing development of adjacent segment disease? Comparative analysis of 3 different lumbar interbody fusion techniques (ALIF, LLIF, PLIF) in L4-5 spondylolisthesis. World Neurosurg 105:612–622

    Article  PubMed  Google Scholar 

  • Lee N, Kim K, Yi S et al (2017b) Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single level with degenerative spinal disease. World Neurosurg 101:216–226

    Article  PubMed  Google Scholar 

  • Lestini W, Fulghum F, Whitehurst L (1994) Lumbar spinal fusion: advantages of posterior lumbar interbody fusion. Surg Technol Int 3:577–590

    CAS  PubMed  Google Scholar 

  • Li J, Phan K, Mobbs R (2017) Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg 98:113–123

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Iundusi R, Tarantino U, Moon M (2010) Intravertebral plate and cage system via lateral trajectory for lumbar interbody fusion – a novel fixation device. Spine J 10:86S

    Article  Google Scholar 

  • Lowe T, Tahernia D (2002) Unilateral transforaminal posterior lumbar interbody fusion. Clin Orthop Relat Res 394:64–72

    Article  Google Scholar 

  • Lykissas M, Aichmair A, Hughes A et al (2014) Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J 14:749–758

    Article  PubMed  Google Scholar 

  • Madan S, Boeree N (2003) Comparison of instrumented anterior interbody fusion with instrumented circumferential fusion. Eur Spine J 12:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malham G, Parker R, Goss B et al (2015) Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24(Suppl 3):339–345

    Article  PubMed  Google Scholar 

  • Marotta N, Cosar M, Pimenta L, Khoo LT (2006) A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus 20:E9

    Article  PubMed  Google Scholar 

  • Mayer M (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 22:691–700

    Article  CAS  PubMed  Google Scholar 

  • McAfee P, DeVine J, Chaput C et al (2005) The indications for interbody fusion cages in the treatment of spondylolisthesis: analysis of 120 cases. Spine 30:S60–S65

    Article  PubMed  Google Scholar 

  • Mehren C, Mayer M, Zandanell C et al (2016) The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res 474:2020–2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Melgar M, Tobler W, Ernst R et al (2014) Segmental and global lordosis changes with two-level axial lumbar interbody fusion and posterior instrumentation. Int J Spine Surg 8:10

    Article  PubMed Central  Google Scholar 

  • Melikian R, Yoon S, Kim J et al (2016) Sagittal plane correction using the lateral transpsoas approach: a biomechanical study on the effect of cage angle and surgical technique on segmental lordosis. Spine 41:E1016–E1021

    Article  PubMed  Google Scholar 

  • Mobbs R, Maharaj M, Rao P (2014) Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. J Neurosurg Spine 21:867–876

    Article  PubMed  Google Scholar 

  • Molinari R, Gerlinger T (2001) Functional outcomes of instrumented posterior lumbar interbody fusion in active-duty US servicemen: a comparison with nonoperative management. Spine J 1:215–224

    Article  CAS  PubMed  Google Scholar 

  • Molloy S, Butler J, Benton A et al (2016) A new extensile anterolateral retroperitoneal approach for lumbar interbody fusion from L1 to S1: a prospective series with clinical outcomes. Spine J 16:786–791

    Article  PubMed  Google Scholar 

  • Ohtori S, Koshi T, Yamashita M et al (2011) Surgical versus nonsurgical treatment of selected patients with discogenic low back pain: a small-sized randomized trial. Spine (Phila Pa 1976) 36(5):347–354

    Article  Google Scholar 

  • Oxland T, Hoffer Z, Nydegger T et al (2000) A comparative biomechanical investigation of anterior lumbar interbody cages: central and bilateral approaches. J Bone Joint Surg Am 82A:383–393

    Article  Google Scholar 

  • Ozgur B, Aryan H, Pimenta L et al (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443

    Article  PubMed  Google Scholar 

  • Park J, Kim Y, Hong H et al (2005) Comparison between posterior and transforaminal approaches for lumbar interbody fusion. J Korean Neurosurg Soc 37:340–344

    Google Scholar 

  • Phan K, Rao P, Kam A, Mobbs R (2015a) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Eur Spine J 24:1017–1030

    Article  PubMed  Google Scholar 

  • Phan K, Rao P, Scherman D et al (2015b) Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci 22:1714–1721

    Article  PubMed  Google Scholar 

  • Phan K, Thayaparan G, Mobbs R (2015c) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion – a systematic review and meta-analysis. Br J Neurosurg 29:705–711

    Article  PubMed  Google Scholar 

  • Phillips F, Cunningham B, Carandang G et al (2004) Effect of supplemental translaminar facet screw fiction on the stability of stand-along anterior lumbar interned fusion cages under physiologic compressive preloads. Spine 29:1731–1736

    Article  PubMed  Google Scholar 

  • Phillips F, Isaacs R, Rodgers W et al (2013) Adult degenerative scoliosis treated with XLIF. Spine 38:1853–1861

    Article  PubMed  Google Scholar 

  • Rao P, Loganathan A, Yeung V, Mobbs R (2015) Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery 76:7–24

    Article  PubMed  Google Scholar 

  • Rathonyi G, Oxland T, Jost B et al (1998) The role of supplementary translaminar screws in anterior lumbar interbody fixation: a biomechanical study. Eur Spine J 7:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis M, Reyes P, Altun I et al (2016) Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine 25:720–726

    Article  PubMed  Google Scholar 

  • Rodgers B, Gerber E, Patterson J (2010) Intraoperative and early postoperative complications in extreme lateral interbody fusion. Spine 36:26–33

    Article  Google Scholar 

  • Rosenberg W, Mummaneni P (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48:569–574

    Article  CAS  PubMed  Google Scholar 

  • Rothenfluh D, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 24(6):1251–1258

    Article  PubMed  Google Scholar 

  • Saigal R, Mundis G, Eastlack R et al (2016) Anterior column realignment (ACR) in adult sagittal deformity correction. Spine 41:S66–S73

    PubMed  Google Scholar 

  • Sakeb N, Ahsan K (2013) Comparison of the early results of transforaminal lumbar interbody fusion and posterior lumbar interbody fusion in symptomatic lumbar instability. Indian J Orthop 47:255–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasso R, Kitchel S, Dawson E (2004) A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Spine 29:113–122

    Article  PubMed  Google Scholar 

  • Saville P, Kadam A, Smith H, Arlet V (2016) Anterior hyperlordotic cages: early experience and radiographic results. J Neurosurg Spine 25:713–719

    Article  PubMed  Google Scholar 

  • Schroeder G, Kepler C, Vaccaro A (2015) Axial interbody arthrodesis of the L5-S1 segment: a systematic review of the literature. J Neurosurg Spine 23:314–319

    Article  PubMed  Google Scholar 

  • Sears W (2005a) Posterior lumbar interbody fusion for lytic spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5:161–169

    Article  PubMed  Google Scholar 

  • Sears W (2005b) Posterior lumbar interbody fusion for degenerative spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5:170–179

    Article  PubMed  Google Scholar 

  • Siepe C, Stosch-Wiechert K, Heider F et al (2015) Anterior stand-alone fusion revisited: a prospective clinical, X-ray and CT investigation. Eur Spine J 24:838–851

    Article  PubMed  Google Scholar 

  • Slucky A, Brodke D, Bachus K et al (2006) Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J 6:78–85

    Article  PubMed  Google Scholar 

  • Sorian-Baron H, Newcomb A, Crawford N et al (2017) Biomechanical effects of an oblique lumbar PEEK cage and posterior augmentation. Spine J 17(10):S185–S186

    Article  Google Scholar 

  • Stauffer R, Coventry M (1972) Anterior interbody lumbar spine fusion. J Bone Joint Surg 54-A:756–768

    Article  Google Scholar 

  • Steffee A, Sitkowski D (1988) Posterior lumbar interbody fusion and plates. Clin Orthop Relat Res 227:99–102

    CAS  PubMed  Google Scholar 

  • Tempel Z, Gandhoke G, Bonfield C et al (2014) Radiographic and clinical outcomes following combined lateral lumbar interbody fusion and posterior segmental stabilization in patients with adult degenerative scoliosis. Neurosurg Focus 36:E11

    Article  PubMed  Google Scholar 

  • Tsantrizos A, Andreou A, Aebi M, Steffen T (2000) Biomechanical stability of five standalone anterior lumbar interbody fusion constructs. Eur Spine J 9:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadapalli S, Sairyo K, Goel V et al (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study. Spine 31:E992–E998

    Article  PubMed  Google Scholar 

  • Wang G, Han D, Cao Z et al (2017) Outcomes of autograft alone versus PEEK+ autograft interbody fusion in the treatment of adult lumbar isthmic spondylolisthesis. Clin Neurol Neurosurg 155:1–6

    Article  PubMed  Google Scholar 

  • Weatherley C, Pricket C, O’Brien J (1986) Discogenic pain persisting despite solid posterior fusion. J Bone Joint Surg Br 68:142–143

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Wang L, Gong H, Zhu D (2012) Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomech Eng Online 11:31

    Article  Google Scholar 

  • Yeager M, Dupre D, Cook D et al (2015) Anterior lumbar interbody fusion with integrated fixation and adjunctive posterior stabilization: a comparative biomechanical analysis. Clin Biomech 30:769–774

    Article  Google Scholar 

  • Youssef J, McAfee P, Patty C et al (2010) Minimally invasive surgery: lateral approach interbody fusion. Spine 35:S302–S311

    Article  PubMed  Google Scholar 

  • Zeilstra D, Staartjes V, Schroder M et al (2017) Minimally invasive transaxial lumbosacral interbody fusion: a ten year single-centre experience. Int Orthop 41:113–119

    Article  PubMed  Google Scholar 

  • Zhang Q, Yuan Z, Zhou M et al (2014) A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord 15:367

    Article  PubMed  PubMed Central  Google Scholar 

  • Zigler J, Delamarter R (2013) Does 360deg lumbar spinal fusion improve long-term clinical outcomes after failure of conservative treatment in patients with functionally disabling single-level degenerative lumbar disc disease? Results of 5-year follow-up in 75 postoperative patients. Int J Spine Surg 7:E1–E7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence McEntee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McEntee, L., Zotti, M.G. (2019). Lumbar Interbody Fusion Devices and Approaches: When to Use What. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics