Skip to main content

Plant In Vitro Systems as Sources of Food Ingredients and Additives

  • Living reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 213 Accesses

Abstract

In the recent years, people prefer to consume food with natural additives, especially those with plant origin because of the increased reports for carcinogenic and other side effects of some synthetic ones. Plant in vitro cultures have recently received great attention as an effective technology for the production of valuable secondary metabolites used as food ingredients and additives. The advantages of plant cell, tissue, and organ cultures over living plants, in terms of secondary metabolite production, are well understand: in the laboratory, growth conditions and parameters can be controlled and optimized; separation of target compounds is much easier; large-scale growth of plant cells in liquid culture in bioreactors can be achieved and ultimately commercialized. This chapter provides an overview and examples of plant in vitro systems producing food colorants, antioxidants, flavors, and sweeteners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2-iP:

6-(γ,γ-Dimethylallylamino)purine

B5:

Gamborg medium

BAP:

6-Benzylaminopurine

CP:

Chee and Pool Vitis medium

cv.:

Cultivar

DW:

Dry weight

FW:

Fresh weight

HPLC:

High-performance liquid chromatography

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

JA:

Jasmonic acid

L-Phe:

L-phenylalanine

LS:

Linsmaier and Skoog medium

MJ:

Methyl jasmonate

MS:

Murashige and Skoog medium

NAA:

α-Naphthaleneacetic acid

SA:

Salicylic acid

SLSs:

Stigma-like structures

TIS:

Temporary immersion systems

TLC:

Thin-layer chromatography

UV:

Ultraviolet light

References

  1. Davis KM (2004) An introduction to plant pigments in biology and commerce. In: Davis KM (ed) Plant pigments and their manipulation. Blackwell, Oxford, pp 1–22

    Google Scholar 

  2. Riaz T, Abbasi MA, Rehman A, Shahzadi T, Ajaib M (2012) Fumaria indica: a valuable natural source of antioxidants for protection against oxidative stress. Int J Pharm Sci Invent 1(1):16–21

    Google Scholar 

  3. Hussain M, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20. doi:10.4103/0975-7406.92725

    Article  CAS  Google Scholar 

  4. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  CAS  Google Scholar 

  5. Georgiev V, Ilieva M, Bley T, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiol Plant 30:581–593. doi:10.1007/s11738-008-0170-6

    Article  CAS  Google Scholar 

  6. Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng in Life Sci 13(1):26–38. doi:10.1002/elsc.201100226

    Article  CAS  Google Scholar 

  7. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102. doi:10.1042/ba20020118

    Article  CAS  Google Scholar 

  8. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–77

    CAS  Google Scholar 

  9. Henry BS (1996) Natural food colours. In: Hendry G, Houghton J (eds) Natural food colorants. Chapman & Hall, London, pp 40–79

    Chapter  Google Scholar 

  10. Ul-Islam S, Rather LJ, Mohammad F (2016) Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – a review. J Adv Res 7:499–514

    Article  CAS  Google Scholar 

  11. Mahendranath G, Venugopalan A, Parimalan R, Giridhar P, Ravishankar GA (2011) Annatto pigment production in root cultures of achiote (Bixa orellana L.) Plant Cell Tissue Organ Cult 106:517–522. doi:10.1007/s11240-011-9931-9

    Article  CAS  Google Scholar 

  12. Narváez J, Flores-Pérez P, Herrera-Valencia V, Castillo F, Ku-Cauich R, Canto-Canché B, Buzzy N, Rivera-Madrid R (2001) Development of molecular techniques for studying the metabolism of carotenoids in Bixa orellana L. HortScience 36(5):982–986

    Google Scholar 

  13. Poornima S, Ambika SR (2012) In vitro production of annatto (natural food dye) from Bixa orellana L. IJBSAT 4(4):23–28

    Google Scholar 

  14. Castello M, Sharan M, Sharon M (2012) In vitro culture studies of Bixa orellana L: II – Bixin accumulation in root and hypocotyl derived callus. Eur J Exp Biol 2(1):151–155

    CAS  Google Scholar 

  15. Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, Asif M (2010) Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55(2):65–70

    Google Scholar 

  16. Sunjtibala H, Damayanti M, Sharma GJ (2001) In vitro propagation and rhizome formation in Curcuma longa Linn. Cytobios 105:71–82

    Google Scholar 

  17. Wu K, Zhang X, Sun S, Wang X (2015) Factors affecting the accumulation of curcumin in microrhizomes of Curcuma aromatica Salisb. BioMed Res Int. doi:10.1155/2015/740794

    Google Scholar 

  18. Husaini AM, Kamili AN, Wani MH, Teixeira da Silva JA, Bhat GN (2010) Sustanable saffron (Crocus sativus Kashmirianus) production: technological and policy intervention for Kashmir. Funct Plant Sci Biotechnol 4(S2):116–127

    Google Scholar 

  19. Himeno H, Sano K (1987) Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 51(9):2395–2400

    CAS  Google Scholar 

  20. Sarma KS, Maesato K, Hara T, Sonoda Y (1990) In vitro production of stigma-like structures from stigma explants of Crocus sativus L. J Exp Bot 41(6):745–748. doi:10.1093/jxb/41.6.745

    Article  CAS  Google Scholar 

  21. Sarma KS, Sharada K, Maesato K, Hara T, Sonoda Y (1991) Chemical and sensory analysis of saffron produced through tissue cultures of Crocus sativus. Plant Cell Tiss Organ Cult 26(1):11–16

    Article  CAS  Google Scholar 

  22. Chen S, Wang X, Zhao B, Yuan X, Wang Y (2003) Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett 25:1235–1238. doi:10.1023/A:1025036729160

    Article  CAS  Google Scholar 

  23. Chen S, Zhao B, Wang X, Yuan X, Wang Y (2004) Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol Lett 26(1):27–30

    Article  CAS  Google Scholar 

  24. Salem N, Msaada K, Elkahoui S, Mangano G, Azaeiz S, Slimen IB, Kefi S, Pintore G, Limam F, Marzouk B (2014) Evaluation of antibacterial, antifungal, and antioxidant activities of aafflower natural dyes during flowering. Biomed Res Int. doi:10.1155/2014/762397

    Google Scholar 

  25. Bernard F, Hassanpour A, Gholizadeh G, Hassannejad S, Chaghari Z (2011) High yellow pigments production by root culture of Carthamus tinctorius and its release in medium under gas oil treatment. Acta Physiol Plant 33:431–436. doi:10.1007/s11738-010-0562-2

    Article  CAS  Google Scholar 

  26. Gao WY, Fan L, Paek KY (2000) Yellow and red pigment production by cell cultures of Carthamus tinctorius in a bioreactor. Plant Cell, Tiss Organ Cult 60(1):95–100. doi:10.1023/A:1006404724055

    Article  CAS  Google Scholar 

  27. Ananga A, Georgiev V, Ochieng J, Phills B, Tsolova V (2013) Production of Anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries. In: Poljuha D, Sladonja B (eds) The Mediterranean genetic code – grapevine and olive. InTech, Rijeka, pp 247–287

    Google Scholar 

  28. Thaw Saw N, Riedel H, Kütük O, Ravichandran K, Smetanska I (2010) Effect of elicitors and precursors on the synthesis of anthocyanin in grape Vitis vinifera cell cultures. Energy Res J 1(2):189–192

    Article  Google Scholar 

  29. Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tiss Organ Cult 108:401–409. doi:10.1007/s11240-011-0051-3

    Article  CAS  Google Scholar 

  30. Nozue M, Yamada K, Nakamura T, Kubo H, Kondo M, Nishimura M (1997) Expression of a vacuolar protein (vp24) in anthocyanin-producing cells of sweet potato in suspension culture. Plant Physiol 115:1065–1072

    Article  CAS  Google Scholar 

  31. Madhusudhan R, Ravishankar GA (1996) Gradient of anthocyanin in cell aggregates of Daucus carota in suspension cultures. Biotechnol Lett 18(11):1253–1256

    Article  CAS  Google Scholar 

  32. Glässgen WE, Wray V, Strack D, Metzger JW, Seitz HU (1992) Anthocyanins from cell suspension cultures of Daucus carota. Phytochemistry 31(5):1593–1601

    Article  Google Scholar 

  33. Miyanaga K, Seki M, Furusaki S (2000) Quantitative determination of cultured strawberry-cell heterogeneity by image analysis: effects of medium modification on anthocyanin accumulation. Biochem Eng J 5:201–207

    Article  CAS  Google Scholar 

  34. Durzan D, Nansen K, Peng C (1991) Anthocyanin production in cell suspension culture of Prunus cerasus cv Vladimir Adv. HortSci 5:3–10

    Google Scholar 

  35. Blando F, Scardino AP, De Bellis L, Nicoletti I, Giovinazzo G (2005) Characterization of in vitro anthocyanin-producing sour cherry (Prunus cerasus L.) callus cultures. Food Res Int 38:937–942. doi:10.1016/j.foodres.2005.02.014

    Article  CAS  Google Scholar 

  36. Madhavi D, Smith M, Berber-Jimenez M (1995) Expression of anthocyanins in callus cultures of cranberry (Vaccinium macrocarpon Ait). J Food Sci 60:351–355

    Article  CAS  Google Scholar 

  37. Simoes-Gurgel C, Cordeiro L, de Castro TC, Callado CH, Albarello N, Mansur E (2011) Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC. (Capparaceae). Plant Cell Tiss Organ Cult 106:537–545. doi:10.1007/s11240-011-9945-3

    Article  CAS  Google Scholar 

  38. Keng C, See K, Lim B (2010) Establishment of Melastoma malabathricum cell suspension cultures for the production of natural pigment. Aspac J Mol Biol Biotechnol 18(1):143–145

    Google Scholar 

  39. Pasqua G, Monacellia B, Mulinacci N, Rinaldi S, Giaccherini C, Innocenti M, Vinceri F (2005) The effect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminata cell cultures. Plant Physiol Biochem 43(3):293–298. doi:10.1016/j.plaphy.2005.02.009

    Article  CAS  Google Scholar 

  40. Shu-min L, Wei-hua Z (1990) Studies on pigment cell culture of Panax ginseng. Acta Bot Sin 32(2):103–111

    Google Scholar 

  41. Kobayashi Y, Akita M, Sakamoto K, Liu H, Shigeoka T, Koyano T, Kawamura M, Furuya T (1993) Large-scale production of anthocyanin by Aralia cordata cell suspension cultures. Appl Microbiol Biotechnol 40:215–218

    Article  CAS  Google Scholar 

  42. See K, Bhatt A, Keng C (2011) Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae). Rev Biol Trop (Int J Trop Biol) 59(2):597–606

    Google Scholar 

  43. Lazar A, Petolescu C (2009) Experimental results concerning the synthesized anthocyanin amount in the Vitis vinifera L. suspension cell culture in the laboratory bioreactor. J Horticult For Biotechnol 13:443–446

    Google Scholar 

  44. Lage DA, Tirado MS, Vanicore SR, Sabino KC, Albarello N (2015) Production of betalains from callus and cell suspension cultures of Pereskia aculeata Miller, an unconventional leafy vegetable. Plant Cell Tiss Organ Cult. 122:341–350. doi:10.1007/s11240-015-0771-x

    Article  CAS  Google Scholar 

  45. Biswas M, Das SS, Dey S (2013) Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci Biotechnol 22(S):1–8. doi:10.1007/s10068-013-0041-9

    Article  CAS  Google Scholar 

  46. Schliemann W, Joy RW IV, Komamine A, Metzger JW, Nimtz M, Wray V, Strack D (1996) Betacyanins from plants and cell cultures of Phytolacca americana. Phytochemistry 42(4):1039–1046

    Article  CAS  Google Scholar 

  47. Guadarrama-Flores B, Rodríguez-Monroy M, Cruz-Sosa F, García-Carmona F, Gandía-Herrero F (2015) Production of dihydroxylated betalains and dopamine in cell suspension cultures of Celosia argentea var. plumose. J Agric Food Chem 63:2741–2749. doi:10.1021/acs.jafc.5b00065

    Article  CAS  Google Scholar 

  48. Lakhotia P, Singh K, Singh SK, Singh MC, Prasad KV, Swaroop K (2014) Influence of biotic and abiotic elicitors on production of betalain pigments in bougainvillea callus cultures. Indian J Hort 71(3):373–378

    Google Scholar 

  49. Pavlov A, Georgiev V, Ilieva M (2005) Betalain biosynthesis by red beet (Beta vulgaris L.) hairy root culture. Process Biochem 40:1531–1533. doi:10.1016/j.procbio.2004.01.001

    Article  CAS  Google Scholar 

  50. Kriznik B, Pavokovic D (2010) Enhancement of betanin yield in transformed cells of sugar beet (Beta vulgaris L.) Acta Bot Croat 69(2):173–182

    CAS  Google Scholar 

  51. Böhm H, Böhm L, Rink E (1991) Establishment and characterization of a betaxanthin-producing cell culture from Portulaca grandiflora. Plant Cell Tiss Organ Cult 26:75–82

    Article  Google Scholar 

  52. Hegazi GA, El-Lamey MT (2011) In vitro production of some phenolic compounds from Ephedra alata Decne. J Appl Environ Biol Sci 1:158–163

    Google Scholar 

  53. Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Braz J Plant Physiol 18:23–26. doi:10.1590/S1677-04202006000100003

    Article  CAS  Google Scholar 

  54. Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agaric Food Chem 45:2374–2378. doi:10.1021/jf970055t

    Article  CAS  Google Scholar 

  55. Lu Y, Foo LY (2001) Antioxidants activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202. doi:10.1016/S0308-8146(01)00198-4

    Article  CAS  Google Scholar 

  56. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Res 579:200–213. doi:10.1016/j.mrfmmm.2005.03.023

    Article  CAS  Google Scholar 

  57. Pavlov AI, Ilieva MP, Panchev IN (2000) Nutrient medium optimization for rosmarinic acid production by Lavandula vera MM cell suspension. Biotechnol Progr 16:668–670. doi:10.1021/bp000041z

    Article  CAS  Google Scholar 

  58. Georgiev M, Kuzeva S, Pavlov A, Kovacheva E, Ilieva M (2006) Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate. Z Naturforsch 61c:241–244

    Google Scholar 

  59. Georgiev MI, Kuzeva SI, Pavlov AI, Kovacheva EG, Ilieva MP (2007) Elicitation of rosmarinic acid by Lavandula vera MM cell suspension culture with abiotic elicitors. World J Microbiol Biotechnol 23:301–304. doi:10.1007/s11274-006-9214-5

    Article  CAS  Google Scholar 

  60. Yang YK, Lee SY, Park WT, Park N, Park SU (2010) Exogenous auxins and polyamines enhance growth and rosmarinic acid production in hairy root cultures of Nepeta cataria L. Plant Omics J 3:190–193

    CAS  Google Scholar 

  61. Rahman RA, El-Wakil H, Abdelsalam NR, Elsaadany R (2015) In-vitro production of rosmarinic acid from asil (Ocimum basilicum L.) and lemon balm (Melissa officinalis L.) Middle East J AppSci 05:47–51

    Google Scholar 

  62. Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha piperita cell suspension cultures. Plant Cell Tiss Organ Cult 108:73–81. doi:10.1007/s11240-011-0014-8

    Article  CAS  Google Scholar 

  63. Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982. doi:10.1016/S0168-9452(03)00275-9

    Article  CAS  Google Scholar 

  64. Agarwal M, Kamal R (2007) Studies of flavonoid production using in vitro cultures of Momordica charantia L. Indian J Biotechnol 6:277–279

    CAS  Google Scholar 

  65. Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E (2008) Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plant grown in vitro by addition of elicitors. Enzym Microb Tech 42:216–221. doi:10.1016/j.enzmictec.2007.09.011

    Article  CAS  Google Scholar 

  66. Lucchesini M, Bertoli A, Mensuali-Sodi A, Pistelli L (2009) Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Sci Horticult 122:484–490. doi:10.1016/j.scienta.2009.06.011

    Article  CAS  Google Scholar 

  67. Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104. doi:10.1016/j.jbiotec.2010.05.009

    Article  CAS  Google Scholar 

  68. Christian M (2013) Flavonoids-chemical constituents of Boerhaavia diffusa L. through TLC and HPLC. Int Res J Chem 2:27–36

    Google Scholar 

  69. Krishna S, Renu S (2013) Isolation and identification of flavonoids from Cyperus rotundus L. in vivo and in vitro. J Drug Deliv Ther 3:109–113

    Google Scholar 

  70. Fattahi M, Nazeri V, Torras-Claveria L, Sefidkon F, Cusido RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Bioss. Ind Crop Prod 50:256–263. doi:10.1016/j.indcrop.2013.07.02

    Article  CAS  Google Scholar 

  71. Sak M, Dokupilova I, Mihalik D, Lakatošova J, Gubišova M, Kraic J (2014) Elicitation of phenolic compounds in cell culture of Vitis vinifera L. by Phaeomoniella chlamydospora. Nova Biotechnol Chim 13:162–171. doi:10.1515/nbec-2015-0006

    CAS  Google Scholar 

  72. Marchev A, Georgiev V, Ivanov I, Badjakov I, Pavlov A (2011) Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.) Biotechnol Lett 33:1873–1878. doi:10.1007/s10529-011-0625-5

    Article  CAS  Google Scholar 

  73. Guerrero RF, Garcia-Parrilla MC, Puertas B, Cantos-Villar E (2009) Wine, resveratrol and health: a review. Nat Prod Commun 4:635–658

    CAS  Google Scholar 

  74. Nassiri-Asl M, Hosseinzadeh H (2009) Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother Res 23(9):1197–1204. doi:10.1002/ptr.2761

    Article  CAS  Google Scholar 

  75. Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    Article  CAS  Google Scholar 

  76. Liswidowati F, Melchior F, Hohmann F, Schwer B, Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183:307–314

    Article  CAS  Google Scholar 

  77. Bejan C, Visoiu E (2011) Resveratrol biosynthesis on in vitro culture conditions in grapevine (cv. Feteasca Neagra and Cabernet Sauvignon) under the action of AlCl3 as elicitor agent. Rom Biotechnol Lett 16:97–101

    CAS  Google Scholar 

  78. Jeandet P, Clement C, Courot E (2014) Resveratrol production at large scale using plant cell suspensions. Eng Life Sci 14:1–11. doi:10.1002/elsc.201400022

    Article  CAS  Google Scholar 

  79. Riedel H, Akumo DN, Thaw Saw NM, Kütük O, Neubauer P, Smetanska I (2012) Elicitation and precursor feeding influence phenolic acids composition in Vitis vinifera suspension culture. Afr J Biotechnol 11:3000–3008. doi:10.5897/AJB11.1185

    CAS  Google Scholar 

  80. Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tiss Organ Cult 122:197–211. doi:10.1007/s11240-015-0761-z

    Article  CAS  Google Scholar 

  81. Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89. doi:10.1007/s00299-011-1141-8

    Article  CAS  Google Scholar 

  82. Keskin N, Kunter B (2010) Production of trans-resveratrol in callus tissue of Őkűzgőzű (Vitis vinifera L.) in response to ultraviolet-C irradiation. J Anim Plant Sci 20:197–200

    Google Scholar 

  83. Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479. doi:10.1016/j.foodchem.2010.07.114

    Article  CAS  Google Scholar 

  84. Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi FU (2006) Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.) Vitis 45:63–68

    CAS  Google Scholar 

  85. Wozniak L, Skapska S, Marszałek K (2015) Ursolic acid – a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20:20614–20641. doi:10.3390/molecules201119721

    Article  CAS  Google Scholar 

  86. Grzegorczyk I, Matkowski A, Wysokińska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104:536–541. doi:10.1016/j.foodchem.2006.12.003

    Article  CAS  Google Scholar 

  87. Marchev A, Georgiev V, Badjakov I, Kondakova V, Nikolova M, Pavlov A (2011) Triterpenes production by rhizogenic callus of Salvia Scabiosifolia Lam. obtained via Agrobacterium rhizogenes mediated genetic transformation. Biotechnol Biotechnol Eq 25:30–33. doi:10.5504/BBEQ.2011.0109

    Article  Google Scholar 

  88. Marchev AS, Ivanov IG, Georgiev VG, Pavlov AI (2012) Determination of di- and triterpenes in Salvia tomentosa Mill. cell suspension culture by high performance liquid chromatography. Scientific works of UFT “Food science, engineering and technologies 59:229–233

    Google Scholar 

  89. Hedayati A, Mirjalili MH, Hadian J (2015) Quantification of betulinic, oleanolic and ursolic acid as medicinally important triterpenoids in wild and in vitro callus culture of Salvia sahendica (Lamiaceae): a comparative study. J Bio Env Sci 6:327–332

    Google Scholar 

  90. Caretto S, Nisi R, Paradiso De Gara L (2010) Tocopherol production in plant cell cultures. Mol Nutr Food Res 54:726–730. doi:10.1002/mnfr.200900397

    Article  CAS  Google Scholar 

  91. Gala R, Mita G, Caretto S (2005) Improving a-tocopherol production in plant cell cultures. J. Plant Physiol 162:782–784. doi:10.1016/j.jplph.2015.04.010

    Article  CAS  Google Scholar 

  92. Badrhadad A, Piri K, Ghiasvand T (2013) Increasing of alpha-tocopherol in cell suspension cultures Elaeagnus angustifolia L. Int J Agri Crop Sci 5:1328–1331

    Google Scholar 

  93. Geipel K, Song X, Socher ML, Kümmritz S, Püschel J, Bley T, Ludwig-Müller J, Steingroewer J (2014) Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production. Appl Microbiol Biotechnol 98:2029–2040. doi:10.1007/s00253-013-5431-7

    Article  CAS  Google Scholar 

  94. Rhodes MJC, Andrew Spencer A, Hamill JD (1991) Plant cell culture in the production of flavour compounds. Biochem Soc Trans 19:702–706

    Article  CAS  Google Scholar 

  95. Rao SR, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304. doi:10.1002/1097-0010(200002)80:3<289:AID-JSFA543>3.0.CO;2-2

    Article  CAS  Google Scholar 

  96. Tan BC, Chin CF (2015) Vanilla planifolia: an economically important orchid and its propagation. Minerva Biotec 27:107–116

    Google Scholar 

  97. Renuga G, Kumar SN (2014) Induction of vanillin related compounds from nodal explants of Vanilla planifolia using BAP and Kinetin. Asian J Plant Sci Res 4:53–61

    Google Scholar 

  98. Havkin-Frenkel D, Podstolski A, Knorr D (1996) Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia. Plant Cell Tiss Organ Cult 45:133–136. doi:10.1007/BF00048756

    Article  CAS  Google Scholar 

  99. Anasori P, Asghari G (2008) Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Res Pharm Sci 3:59–63

    CAS  Google Scholar 

  100. Cafino EJV, Lirazan MB, Marfori CE (2016) A simple HPLC method for the analysis of [6]-gingerol produced by multiple shoot culture of ginger (Zingiber officinale). Int J Pharmacogn Phytochem Res 8:38–42

    Google Scholar 

  101. Johnson TS, Ravishankar GA, Venkataraman LV (1990) In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci 70:223–229. doi:10.1016/0168-9452(90)90137-D

    Article  CAS  Google Scholar 

  102. Ancona-Escalante WDR, Baas-Espinola FM, Castro-Concha LA, Vazquez-Flota FA, Maya MM, MDL M-H (2013) Induction of capsaicinoid accumulation in placental tissues of Capsicum chinense Jacq. requires primary ammonia assimilation. Plant Cell Tiss Org Cult 113:565–570. doi:10.1007/s11240-012-0282-y

    Article  CAS  Google Scholar 

  103. Aldana-Iuit JG, Sauri-Duch E, de Lourdes M, Miranda-Ham ML, Castro-Concha LA, Cuevas-Glory LF, Vazquez-Flota FA (2015) Nitrate promotes capsaicin accumulation in Capsicum chinense immobilized placentas. BioMed Res Int 2015:1–6. doi:10.1155/2015/794084

    Article  CAS  Google Scholar 

  104. Malpathak NP, David SB (1986) Flavor formation in tissue cultures of garlic (Allium sativum L.) Plant Cell Rep 5:446–447. doi:10.1007/BF00269638

    Article  CAS  Google Scholar 

  105. Hayashi T, Sano K, Ohsumi C (1993) Gas chromatographic analysis of alliin in the callus tissues of Allium sativum. Biosci Biotech Biochem 57:162–163

    Article  CAS  Google Scholar 

  106. Mizutani K, Tanaka O (2002) Use of Stevia rebaudiana sweeteners in Japan. In: Kinghorn AD (ed) Stevia, the genus Stevia medicinal and aromatic plants industrial profile. Taylor and Francis, Boca Raton, pp 178–195

    Google Scholar 

  107. Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB (2006) Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res 20:732–736. doi:10.1002/ptr.1944

    Article  CAS  Google Scholar 

  108. Yasukawa K, Kitanaka S, Seo S (2002) Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol Pharm Bull 25:1488–1490

    Article  CAS  Google Scholar 

  109. Bornia ECS, Amaral VD, Bazotte RB, Alves-do-prado W (2008) The reduction of arterial tension produced by stevioside is dependent on nitric oxide synthase activity when the endothelium is intact. J Smooth Muscle Res 44:1–8. doi:10.1540/jsmr.44.1

    Article  Google Scholar 

  110. Jayaraman S, Manonharan MS, Illanchezian S (2008) In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (asteraceae) leaf extracts. Trop J Pharm Res 7:1143–1149

    Article  Google Scholar 

  111. Xu D, Du W, Zhao L, Davey AK, Wang J (2008) The neuroprotective effects of isosteviol against focal cerebral ischemia injury induced by middle cerebral artery occlusion in rats. Plant Med 74:816–821. doi:10.1155/2016/1379162

    Article  CAS  Google Scholar 

  112. Mahmud S, Akter S, Jahan IA, Khan S, Khaleque A, Islam S (2014) Comparative analyses of stevioside between fresh leaves and in-vitro derived callus tissue from Stevia rebaudiana Bert. using HPLC. Bangladesh J Sci Ind Res 49:199–204. doi:10.3329/bjsir.v49i4.22621

    Google Scholar 

  113. Swanson SM, Mahady GB, Beecher CWW (1992) Stevioside biosynthesis by callus, root, shoot and rootedshoot cultures in vitro. Plant Cell Tiss Organ Cult 28:151–157. doi:10.1007/BF00055510

    Article  CAS  Google Scholar 

  114. Taware AS, Mukadam DS, Chavan AM, Taware SD (2010) Comparative studies of in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni). Int J Integr Biol 9:10–15

    Google Scholar 

  115. Mathur S, Shekhawat GS (2013) Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35:931–939. doi:10.1007/s11738-012-1136-2

    Article  CAS  Google Scholar 

  116. Kumari M, Chandra S (2015) Stevioside glycosides from in vitro cultures of Stevia rebaudiana and antimicrobial assay. Braz J Bot 38:761–770. doi:10.1007/s40415-015-0193-3

    Article  Google Scholar 

  117. Hendry G (1993) Evolutionary origins and natural functions of fructans. A climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  118. den Ende WV (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247

    Article  CAS  Google Scholar 

  119. Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr. 137(S11): 2493S–2502S

    Google Scholar 

  120. Vlaseva R, Ivanova M, Petkova N, Todorova M, Denev P (2014) Аnalysis of fermented lactic acid dairy products enriched with inulin-type fructans. Sci Bull Biotechnol Ser F 18:145–149

    Google Scholar 

  121. Abou-Mandour AA, Czygan FC, Haaß D, Franz G (1987) Fructan synthesis in tissue cultures of Symphytum officinale L. initiation, differentiation, and metabolic activity. Planta Med 53(5):482–487

    Article  CAS  Google Scholar 

  122. Haaß D, Abou-Mandour AA, Blaschek W, Franz G, Czygan FC (1991) The influence of phytohormones on growth, organ differentiation and fructan production in callus of Symphytum officinale L. Plant Cell Rep 10(8):421–424. doi:10.1007/BF00232616

    Article  Google Scholar 

  123. Trevisan F, Chu EP, Gaspar M, Angela M, Carvalho M (2014) In vitro culture and fructan production by Vernonia herbacea (Asteraceae). Acta Physiol Plant 36:2299–2307

    Article  CAS  Google Scholar 

  124. Taha HS, El-sawy AM, Bekheet SA (2007) In vitro studies on jerusalem artichoke (Helianthus tuberosus) and enhancement of inulin production. J Appl Sci Res 3(9):853–858

    CAS  Google Scholar 

  125. Itaya NM, Artimonte Vaz AP, Kerbauy GB, Figueiredo-Ribeiro RCL (2005) Fructan production in callus and in vitro cloned seedlings of Viguiera discolor Baker (Asteraceae). Acta Bot Bras 19(3):579–586

    Article  Google Scholar 

  126. Vieira CCJ, Braga MR, Figueiredo-Ribeiro RCL (1995) Fructans in callus of Gomphrena macrocephala St.-Hil. Plant Cell Tiss Organ Cult 42:233. doi:10.1007/BF00029992

    Article  CAS  Google Scholar 

  127. Petkova N, Denev P, Ivanova M, Vlaseva R, Todorova M (2013) Influence of harvest time on fructan content in the tubers of Helianthus tuberosus L., Nutrihort proceeding papers: nutrient management, innovative techniques and nutrient legislation in intensive horticulture for an improved water quality, Ghent, pp 284–289, 16–18 Sept 2013

    Google Scholar 

  128. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Natl Acad Sci USA 97:8699–8704

    Article  CAS  Google Scholar 

  129. Weyens G, Ritsema TK, Van Dun D, Meyer M, Lommel J, Lathouwers I, Rosquin P, Denys A, Tossens M, Nijs S, Turk N, Gerrits S, Bink B, Walraven M, Smeekens LS (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J 2:321–327. doi:10.1111/j.nn2004.00074.x

    Article  CAS  Google Scholar 

  130. Kilian S, Kritzinger S, Rycroft C, Gibson GR, du Preez J (2002) The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol 18:637–644

    Article  CAS  Google Scholar 

  131. Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110(2):355–363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Vrancheva, R., Petkova, N., Ivanov, I. (2017). Plant In Vitro Systems as Sources of Food Ingredients and Additives. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-32004-5_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32004-5_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32004-5

  • Online ISBN: 978-3-319-32004-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics