Skip to main content

Heat and Mass Transfer Processes in the Eye

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Heat and mass transport processes in humans occur at cellular, tissue, organ, and whole-body levels. The subfield of heat and mass transfer in the human eye provides the context for understanding the functions of the eye and to develop protective, diagnostic, and therapeutic processes. The eye is sensitive to the environment because of the absence of blood flow through parts such as cornea and lens, and the absence of thermal sensors and protective reflexes beyond blinking. Heat transfer processes in the eye comprise the continuous evaporation of the tear layer coating the corneal region of a normal eye, the thermal massage across the pupils called the transpupillary thermotherapy (TTT), and the several methods of internal tissue ablation involving lasers. Drug delivery inside the eye is an important man-made mass transfer process that includes the intravitreous and transscleral routes to medicate the retina. This chapter focuses on the exposition of heat transfer processes that drive laser surgical methods and the mass transfer processes that govern drug delivery methods to the retina. In a bridging section, discussion on the combined heat and mass transfer processes involved in the TTT-based convection-assisted drug diffusion to the retina through the vitreous humor is also provided.

This life’s dim windows of the soul

Distorts the heavens from pole to pole

And leads you to believe a lie

When you see with, not through, the eye.

― William Blake

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abouali O, Modareszadeh A, Ghaffariyeh A, Tu J (2012) Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys 34(6):681–692

    Article  Google Scholar 

  • Arifin Y, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev 58:1274–1325

    Article  Google Scholar 

  • Balachandran RK, Barocas VH (2008) Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res 25(11):2685–2696

    Article  Google Scholar 

  • Behar-Cohen FF, El Aouni A, Gautier S, Daivd G, Davis S, Chapon P, Parel JM (2002) Transscleral coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res 74:51–59

    Article  Google Scholar 

  • Blankenstein MF, Zuclich J, Allen RG (1986) Retinal hemorrhage thresholds for Q-switched neodymium-YAG laser exposures. Invest Ophthalmol Vis Sci 27:1176–1179

    Google Scholar 

  • Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol Vis Sci 1:776–783

    Google Scholar 

  • Brinkmann R, Koinzer S, Kerstin S, Ptaszynski L, Bever M, Baade A, Luft S, Miura Y, Roider J, Birngruber R (2012) Real-time temperature determination during retinal photocoagulation on patients. J Biomed Opt Spec Sect Photoacoust Imaging Sens 17(6):061219

    Google Scholar 

  • Cain CP, Toth CA, DiCarlo CD (1995) Visible retinal lesions from ultrashort laser pulses in the primate eye. Invest Ophthalmol Vis Sci 36:879–888

    Google Scholar 

  • Chew TKP, Wong JS, Chee KLC, Tock PCE (2000) Corneal transmissibility of diode versus argon lasers and their photothermal effects on 20 the cornea and iris. Clin Exp Ophthalmol 28:53–57

    Article  Google Scholar 

  • Efron N, Young G, Brennan N (1989) Ocular surface temperature. Curr Eye Res 8(9):901–906

    Google Scholar 

  • Flyckt VMM, Raaymakers BW, Lagendijk JJW (2006) Modelling the impact of blood flow on temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol 51:5007–5021

    Article  Google Scholar 

  • Fraunfelder FW (2008) Liquid nitrogen cryotherapy for surface eye disease (an AOS thesis). Trans Am Ophthalmol Soc 106:301–324

    Google Scholar 

  • Gerstman BS, Glickman RD (1999) Activated rate processes and a specific biochemical mechanism for explaining delayed laser induced thermal damage to the retina. J Biomed Opt 4:345–351

    Article  Google Scholar 

  • Glickman R, Sowell RD, Lam K-W (1993) Kinetic properties of light-dependent ascorbic acid oxidation by melanin. Free Radic Biol Med 15:513–547

    Google Scholar 

  • Goldman A, Ham WJ, Mueller HA (1975) Mechanisms of retinal damage resulting from the exposure of rhesus monkeys to ultrashort laser pulses. Exp Eye Res 21:457–469

    Article  Google Scholar 

  • Jobling AI, Guymer RH, Vessey KA, Greferath U, Mills SA, Brassington KH, Luu CD, Aung KZ, Trogrlic L, Plunkett M, Fletcher EL (2015) Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J 29:696–710

    Article  Google Scholar 

  • Kohtiao A, Resnick I, Newton J, Schwell H (1966) Threshold lesions in rabbit retinas exposed to pulsed laser radiation. Am J Ophthalmol 62:664–669

    Article  Google Scholar 

  • Kumar S, Acharya S, Beuerman R, Palkama A (2005) Numerical solution of ocular fluid dynamics in a rabbit eye: parametric effects. Ann Biomed Eng 34(3):530–544

    Article  Google Scholar 

  • Lafond G, Boucher MC, Labelle P, Dumas J (2003) The effects of laser panretinal photocoagulation on cone, rod and oscillatory potentials responses in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44:3986

    Article  Google Scholar 

  • Lee TW, Robinson JR (2004) Drug delivery to the posterior segment of the eye II: development and validation of a simple pharmacokinetic model for subconjunctival injection. J Ocul Pharmacol Ther 20:43–53

    Article  Google Scholar 

  • Macular Photocoagulation Study Group (1986) Recurrent choroidal neovascularization after argon laser photocoagulation for neovascular maculopathy. Arch Ophthalmol 104(4):503–512

    Article  Google Scholar 

  • Mapstone R (1968) Measurement of corneal temperature. Exp Eye Res 7:237–243

    Article  Google Scholar 

  • Meyer-Schwickerath G (1954) Light coagulation; a method for treatment and prevention of the retinal detachment. Albrecht Von Graefes Arch Ophthalmol 156(1):2–34

    Article  Google Scholar 

  • Meyer-Schwickerath G (1956) Prophylactic treatment of retinal detachment by light-coagulation. Trans Ophthalmol Soc U K 76:739–750

    Google Scholar 

  • Narasimhan A (2012) Essentials of heat and fluid flow in porous media. CRC Press, New York

    MATH  Google Scholar 

  • Narasimhan A, Jha KK (2012) Bio-heat transfer simulation of retinal laser irradiation. Int J Numer Method Biomed Eng 28(5):547–559

    Article  MATH  Google Scholar 

  • Narasimhan A, Jha KK (2015) Convection-enhanced intravitreous drug delivery in human eye. J Heat Transf 137(12):121003

    Article  Google Scholar 

  • Narasimhan A, Ramanathan VG (2012) Effect of choroidal blood flow on transscleral retinal drug delivery using a porous medium model. Int J Heat Mass Transf 55(21):5665–5672

    Google Scholar 

  • Narasimhan A, Sundarraj C (2013) Effect of choroidal blood perfusion and natural convection in vitreous humor during transpupillary thermotherapy (TTT). Int J Numer Method Biomed Eng 29(4):530–541

    Article  MathSciNet  Google Scholar 

  • Narasimhan A, Sundarraj C (2016) Experimental study of convection-assisted intravitreal drug delivery. J Therm Biol (under review)

    Google Scholar 

  • Narasimhan A, Jha KK, Gopal L (2010) Transient simulations of heat transfer in human eye undergoing laser surgery. Int J Heat Mass Transf 53(1–4):482–490

    Article  MATH  Google Scholar 

  • Ooi E, Ng E (2008) Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med 38(2):252–262

    Article  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1(2):93–122

    Google Scholar 

  • Ranta VP, Urtti A (2006) Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 58(1):1164–1181

    Article  Google Scholar 

  • Repetto R, Siggers JH, Stocchino A (2010) Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol 9(1):65–76

    Article  Google Scholar 

  • Robinson MR (2006) A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 82(3):479–487

    Article  Google Scholar 

  • Roegener J, Brinkmann R, Lin C (2004) Pump-probe detection of laser-induced microbubble formation in retinal pigment epithelium cells. J Biophys Opt 9:367–371

    Google Scholar 

  • Sramek C, Paulus Y, Nomoto H, Huie P, Brown J, Palanker D (2009) Dynamics of retinal photocoagulation and rupture. J Biomed Opt 14(3):034007

    Article  Google Scholar 

  • Stay MS, Xu J, Randolf TW, Barocas VH (2006) Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res 20(1):96–102

    Article  Google Scholar 

  • Szabó A, Varga V, Toimela T, Hiitelä K, Tähti H, Oja SS, Süveges I, Salminen L (2004) Laser treatment of cultured retinal pigment epithelial cells-evaluation of the cellular damage in vitro. J Ocul Pharmacol Ther 20(3):246–255

    Article  Google Scholar 

  • Thompson CR, Gerstman BS, Jacques SL, Rogers ME (1996) Melanin granule model for laser-induced thermal damage in the retina. Bull Math Biol 58(3):513–553

    Article  MATH  Google Scholar 

  • Wang J, Chung JL, Schuele G, Vankov A, Dalal R, Wiltberger M, Palanker D (2015) Safety of cornea and iris in ocular surgery with 355-nm lasers. J Biomed Opt 20(9):095005

    Article  Google Scholar 

  • Wolbarsht M, Landers BM (1980) The rationale of photocoagulation therapy for proliferative diabetic retinopathy: a review and a model. Ophthalmic Surg Lasers 11(4):235–243

    Google Scholar 

  • Wyatt HJ (1996) Ocular pharmacokinetics and conventional flow. J Ocul Pharmacol Ther 12:441–459

    Article  Google Scholar 

  • Xu J, Heys JJ, Barocas VH, Randolph TW (2000) Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res 17(6):664–669

    Article  Google Scholar 

  • Yoshida A, Ishiko S, Kojima M (1992) Outward permeability of the blood-retinal barrier. Graefes Arch Clin Exp Ophthalmol 230:78–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunn Narasimhan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Narasimhan, A. (2017). Heat and Mass Transfer Processes in the Eye. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_72-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_72-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Heat and Mass Transfer Processes in the Eye
    Published:
    24 August 2017

    DOI: https://doi.org/10.1007/978-3-319-32003-8_72-2

  2. Original

    Heat and Mass Transfer Processes in the Eye
    Published:
    03 July 2017

    DOI: https://doi.org/10.1007/978-3-319-32003-8_72-1