Skip to main content

Modulatory Role of Curcumin in miR-Mediated Regulation in Cancer and Non-cancer Diseases

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The dietary polyphenol curcumin imparts its pharmacological effects through anticancer, anti-inflammatory, antioxidant, and other mechanisms by inhibiting/modulating aberrant signaling molecules and transcription factors. MicroRNAs (miRs) modulate gene expression by regulating the degradation or translation repression of mRNA. The plethora of evidences over the past few years reflect the disruption of several fundamental regulatory mechanisms, such as carcinogenesis, cell proliferation, differentiation, programed cell death, angiogenesis, migration, invasion, etc., concerning miRs. Curcumin-mediated epigenetic alterations are the regulation of the expression of various pathogenic miRs in liver fibrosis, neurodegenerative diseases, diabetic nephropathy, ocular diseases, etc., on one hand and modulation of several tumor suppressor and oncogenic and epithelial-mesenchymal transition-suppressor microRNAs on the other hand. Based on recent evidences, miRs from miR-21, miR-26, miR-27, miR-28, miR-143, miR-199, miR-200 family, the let-7 family, etc., contribute to anomalies in both cancer and non-cancer diseases through aberrant signaling, tumor formation, and chemoresistance. In context to the significant role of miR homeostasis we summarize, in this book chapter, the findings based on in vitro and in vivo evidences on the regulatory role of curcumin on miR expression involved in cancer and non-cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Akt/mTOR signaling:

Protein kinase B (PKB), also known as Akt, is a serine-/threonine-specific protein kinase/mechanistic target of rapamycin signaling

AOF1/2:

Amine oxidase domain-containing protein 1/2

ARPE-19 cells:

Human retinal pigment epithelial cell line

BAG2:

BAG family molecular chaperone regulator 2

BMI1:

B lymphoma Mo-MLV insertion region 1 homolog

CAM:

Chick chorioallantoic membrane

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

COL1A1:

Collagen type I alpha 1 chain

COX2:

Cyclooxygenase-2

CML xenograft:

Chronic myeloid leukemia xenograft

DNMT3b:

DNA (cytosine-5-)-methyltransferase 3 beta

Dkk-3/SMAD4:

DKK3; dickkopf WNT signaling pathway inhibitor 3/SMAD family member n°4

2D–DIGE:

Two-dimensional difference gel electrophoresis

DNMT1:

DNA (cytosine-5)-methyltransferase 1

DU145 cell:

Human Caucasian prostate cell; derived from metastatic site: brain

EMT-suppressive miRs:

Epithelial-mesenchymal transition-suppressive microRNAs

EZH2:

Enhancer of zeste 2 polycomb repressive complex 2 subunit

Erbb3:

V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3

HCT116 cell:

Colon cancer cell line

HCT116-5FUR cell:

5-fluorouracil-resistant cellosaurus cell line

HL-60 cell:

Human promyelocytic leukemia cell

HAG cells:

Human astroglial cells

HSC cells:

Hematopoietic stem cells

HNG cells:

Human neuronal glial cells

HUVECs :

Human umbilical vein endothelial cells

IL-1β:

Interleukin-1 beta

K562 cell:

Chronic myelogenous leukemia cell

LAMA84 cell:

Human leukocytic cell line

Let-7 family miRs:

Lethal-7 family microRNAs

mRNA:

Messenger RNA

MMP13:

Matrix metallopeptidase 13

MAPK signaling:

Mitogen-activated protein kinase signaling

MMP-9:

Matrix metallopeptidase 9

mmu-miR:

Mus musculus microRNA

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NKAP:

NF-kappa-B-activating protein

Oct4:

Octamer-binding transcription factor 4

PTEN:

Phosphatase and tensin homolog

PTP1B protein:

Protein-tyrosine phosphatase 1B protein

PDGFβ:

Platelet-derived growth factor beta

PKCs:

Protein kinase, catalytic subunit

PDCD4:

Programmed Cell Death 4 (Neoplastic Transformation Inhibitor)

PRCs:

Polycomb repressive complexes

PI3K:

Phosphoinositide 3-kinase

PC cells:

Prostate cancer cell

Rko cell:

Rectal carcinoma cell line

SCID mice:

Severe combined immunodeficient mice

Sox2:

SRY (sex determining region Y)-box 2

Sema6a protein:

Semaphorin 6A protein

STAT-3:

Signal transducer and activator of transcription 3

SUZ12:

SUZ12 Polycomb repressive complex 2 subunit

SW480-5FUR cell:

5-fluorouracil-resistant cellosaurus cell line

Sp proteins:

Surfactant proteins

TIMP-1:

Tissue inhibitors of metalloproteinases

TGIF:

TG-interacting factor

TGF-β:

Transforming growth factor beta

Trps1:

Transcriptional repressor GATA binding 1

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

VEGFB gene:

Vascular endothelial growth factor B gene

WT1 gene:

Wilms tumor 1 gene

ZBTB10:

Zinc finger and BTB domain-containing 10

ZBTB4:

Zinc finger and BTB domain-containing 4

Y79 RB cell:

Human Caucasian retinoblastoma cell line

References

  • Angel-Morales G, Noratto G, Mertens-Talcott SU (2012) Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct 3:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Wang W, Sun G, Zhang M, Dong J (2016) Curcumin inhibits angiogenesis by up-regulation of microRNA-1275 and microRNA-1246: a promising therapy for treatment of corneal neovascularization. Cell Prolif:751–762. 49P

    Google Scholar 

  • Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, Liang S (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY (2015) Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun 467:872–878

    Article  CAS  PubMed  Google Scholar 

  • Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D (2011) miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 25:1734–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XQ, Gu TT, Wang W, Song L, Chen TY, Xue QC, Zhou F, Li JM, Kong LD (2015) Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res 59:2355–2370

    Article  CAS  PubMed  Google Scholar 

  • Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY, Wu JB, Xing CY, Yu K (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res CR 31:27

    Article  PubMed  Google Scholar 

  • Guo H, Xu Y, Fu Q (2015) Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol: J Int Soc Oncodev Biol Med 36:8511–8517

    Article  CAS  Google Scholar 

  • Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M (2014) Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 232:40–51

    Article  CAS  PubMed  Google Scholar 

  • Hassan ZK, Al-Olayan EM (2012) Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev 13:5405–5408

    Article  PubMed  Google Scholar 

  • He B, Hu M, Li SD, Yang XT, Lu YQ, Liu JX, Chen P, Shen ZQ (2013) Effects of geraniin on osteoclastic bone resorption and matrix metalloproteinase-9 expression. Bioorg Med Chem Lett 23:630–634

    Article  CAS  PubMed  Google Scholar 

  • Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, Haque R (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khor TO, Keum YS, Lin W, Kim JH, Hu R, Shen G, Xu C, Gopalakrishnan A, Reddy B, Zheng X, Conney AH, Kong AN (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U, Sommerhoff CP, Noonan DM, Nerlich AG, Fontana L, Bachmeier BE (2014) miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and −2. Mol Oncol 8:581–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  • Li D, Lu Z, Jia J, Zheng Z, Lin S (2013) MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res 37:422–431

    Article  CAS  PubMed  Google Scholar 

  • Li G, Bu J, Zhu Y, Xiao X, Liang Z, Zhang R (2015) Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol 8:15684–15695

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics 10:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YY, Cui JG, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ (2011) Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models. Neurosci Lett 487:94–98

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gao J, Du Y, Li Z, Ren Y, Gu J, Wang X, Gong Y, Wang W, Kong X (2012) Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 131:683–691

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, Wu X, Cheng L, Ma C, Xia J, Wang Z (2014) Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett 231:82–91

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, Ferns GA (2013) Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 27:374–379

    Article  CAS  PubMed  Google Scholar 

  • Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M (2014) The attenuation of pain behavior and serum COX-2 concentration by Curcumin in a rat model of neuropathic pain. Korean J Pain 27:246–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016a) Role of microRNAs in the therapeutic effects of Curcumin in non-cancer diseases. Mol Diagn Ther 20:335–345

    Article  CAS  PubMed  Google Scholar 

  • Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A (2016b) Curcumin as a MicroRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol 171:1–38

    Article  CAS  PubMed  Google Scholar 

  • Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31:185–197

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 6:e16081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil SP, Tran N, Geekiyanage H, Liu L, Chan C (2013) Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett 554:121–125

    Article  CAS  PubMed  Google Scholar 

  • Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474

    Article  CAS  PubMed  Google Scholar 

  • Sawan C, Vaissiere T, Murr R, Herceg Z (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887

    Article  CAS  PubMed  Google Scholar 

  • Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, Khorramizadeh MR (2014) Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol 22:230–235

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni SK, Chopra K (2006) Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33:940–945

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6:167–177. Official publication of the Wound Healing Society [and] the European Tissue Repair Society

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37:421–428

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7:e30590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 9:403–417

    PubMed  PubMed Central  Google Scholar 

  • Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G, Alessandro R (2015) Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget 6:21918–21933

    Article  PubMed  PubMed Central  Google Scholar 

  • Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, Shakibaei M, Boland CR, Goel A (2015) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010) Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett 292:141–148

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol (Northwood, London, England) 27:1114–1118

    Article  CAS  Google Scholar 

  • Yang N, Mahato RI (2011) GFAP promoter-driven RNA interference on TGF-beta1 to treat liver fibrosis. Pharm Res 28:752–761

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Dai W, Jiang L, Lay EY, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE (2016) Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 27:283–294. A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J (2015) Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 357:196–205

    Article  CAS  PubMed  Google Scholar 

  • Yeh WL, Lin HY, Huang CY, Huang BR, Lin C, Lu DY, Wei KC (2015) Migration-prone glioma cells show curcumin resistance associated with enhanced expression of miR-21 and invasion/anti-apoptosis-related proteins. Oncotarget 6:37770–37781

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR (2014) Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci 8:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24:1217–1223

    CAS  PubMed  Google Scholar 

  • Zhang W, Bai W, Zhang W (2014) MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol 16:708–713. Official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, Lu Z, Gao S, Liao Y, Chen B, Yu F (2014) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation – a novel mechanism suppressing liver fibrosis. FEBS J 281:88–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chowdhury, S., Ghosh, J., Sil, P.C. (2017). Modulatory Role of Curcumin in miR-Mediated Regulation in Cancer and Non-cancer Diseases. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics