Skip to main content

Nutrition, DNA Methylation, and Developmental Origins of Cardiometabolic Disease: A Signal Systems Approach

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The developmental origins of health and disease (DOHaD) hypothesis posits that environmental exposures during vulnerable developmental stages have a lasting impact on adult phenotype. Early life nutrition is recognized as a key determinant of long-term health, and epigenetic mechanisms have surfaced as a potential biological mechanism. This review first provides an overview of literature regarding epigenetically mediated DOHaD phenomena within the realm of cardiometabolic disease. Next, parallels are drawn between a signal system and epigenetic programming in DOHaD; specifically, with DNA methylation acting as a signal within an individual spanning from early to later life. Finally, epigenetically mediated DOHaD phenomena are explored using life course epidemiology and a signal system framework to identify potential sources of error, and make suggestions for appropriate study designs and analytical strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BPA:

Bisphenol A

CpG:

Cytosine-phosphate-guanine

DAG:

Directed acyclic graph

DNMT:

DNA methyltransferase

DOHaD:

Developmental origins of health and disease

EBLUP:

Empirical Best Linear Unbiased Predictor

References

  • Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  CAS  PubMed  Google Scholar 

  • Barlow D, Bartolomei M (2007) Genomic imprinting in mammals. In: Allis D, Jenuwein T, Reinberg D, Caparros M-L (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Cooper WN, Khulan B, Owens S et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104: 13056–13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hajj N, Pliushch G, Schneider E et al (2013) Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 62:1320–1328

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulk C, Liu K, Barks A et al (2014) Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 9:934–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser A, Tilling K, Macdonald-Wallis C et al (2010) Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121:2557–2564

    Article  PubMed  PubMed Central  Google Scholar 

  • Getty T (2014) GEIs when information transfer is uncertain or incomplete. In: Hosken HA (ed) Genotype-by-environment interactions and sexual selection. Wiley Blackwell, Chichester

    Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with Child’s later adiposity. Diabetes 60:1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haertle L, El Hajj N, Dittrich M et al (2017) Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin Epigenetics 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochmanski J, Marchlewicz EH, Savidge M et al (2017a) Longitudinal effects of developmental bisphenol a and variable diet exposures on epigenetic drift in mice. Reprod Toxicol 68:154–163

    Article  CAS  PubMed  Google Scholar 

  • Kochmanski J, Montrose L, Goodrich JM et al (2017b) Environmental deflection: the impact of toxicant exposures on the aging epigenome. Toxicol Sci 156:325–335

    PubMed  Google Scholar 

  • Kuh D, Ben-Shlomo Y, Lynch J et al (2003) Life course epidemiology. J Epidemiol Community Health 57:778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Barraza-Villarreal A, Hernandez-Vargas H et al (2013) Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr 98:480–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillycrop K, Murray R, Cheong C et al (2017) ANRIL promoter DNA methylation: a perinatal marker for later adiposity. EBioMedicine 19:60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen Q, Tsai H-J et al (2014) Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 55:223–230

    Article  CAS  PubMed  Google Scholar 

  • Moore TR (2010) Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol 202:643–649

    Article  PubMed  Google Scholar 

  • Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352

    Article  CAS  PubMed  Google Scholar 

  • Perng W, Gillman MW, Mantzoros CS et al (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24:793–800.e791

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer S, Kruger J, Maierhofer A et al (2016) Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep 6:27969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regnault N, Gillman MW, Rifas-Shiman SL et al (2013) Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care 36:3045–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseboom T, Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485

    Article  PubMed  Google Scholar 

  • Shah S, McRae AF, Marioni RE et al (2014) Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 24:1725–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon CEA (1948) Mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Sharp GC, Lawlor DA, Richmond RC et al (2015) Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon longitudinal study of parents and children. Int J Epidemiol 44:1288–1304

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverman BL, Metzger BE, Cho NH et al (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18:611

    Article  CAS  PubMed  Google Scholar 

  • Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286

    Article  CAS  PubMed  Google Scholar 

  • Soubry A, Murphy SK, Wang F et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 39:650–657

    Article  CAS  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanderWeele TJ, Tchetgen Tchetgen EJ (2017) Mediation analysis with time varying exposures and mediators. J R Stat Soc Ser B Stat Methodol 79:917–938

    Article  Google Scholar 

  • Wahl S, Drong A, Lehne B et al (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541:81–86

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E et al (2010) Season of conception in rural Gambia affects DNA methylation at putative human metastable Epialleles. PLoS Genet 6:e1001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Perng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Laubach, Z.M., Faulk, C.D., Cardenas, A., Perng, W. (2017). Nutrition, DNA Methylation, and Developmental Origins of Cardiometabolic Disease: A Signal Systems Approach. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics