Skip to main content

Circumbinary Planets Around Evolved Stars

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Exoplanets

Abstract

The current state of evidence for planets around evolved star binaries is reviewed. The small sizes of compact evolved stars leads to sharp features when they are eclipsed by binary companions, enabling these eclipses to be used as precise clocks. In principle, these measurements are sensitive enough to detect the perturbations due to super-Earth mass planets in decade-long orbits around these binaries. Significant timing perturbations have now been measured in dozens of systems, with planetary orbits proposed in many cases, often with multiple planets required to fit the observed variations. However, the current situation is unclear, with almost all proposed orbits found to be inconsistent with new data or proving to be dynamically unstable. Variations in the internal structure of the companion stars are a probable source of noise in these measurements, although proposed mechanisms struggle to explain the magnitude of the timing variations seen in many systems. Growing evidence that evolved star binaries can possess circumbinary discs that bear a striking similarity to protoplanetary discs around young stars demonstrates the need for progress in this field, since they may be key sites of second-generation planet formation. Such progress is likely imminent, given the large number of newly discovered systems with either guaranteed timing stability or independent clocks.

Thomas R. Marsh died before publication of this work was completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida LA, Jablonski F (2011) Two bodies with high eccentricity around the cataclysmic variable QS Vir. In: Sozzetti A, Lattanzi MG Boss AP (eds) The astrophysics of planetary systems: formation, structure, and dynamical evolution, vol 276, pp 495–496. https://doi.org/10.1017/S1743921311020941

  • Almeida LA, Pereira ES, Borges GM et al (2020) Eclipse timing variation of GK Vir: evidence of a possible Jupiter-like planet in a circumbinary orbit. MNRAS 497(3):4022–4029

    Article  ADS  Google Scholar 

  • Anugu N, Kluska J, Gardner T et al (2023) Three-dimensional orbit of AC her determined: binary-induced truncation cannot explain the large cavity in this post-AGB transition disk. ApJ 950(2):149

    Article  ADS  Google Scholar 

  • Applegate JH (1992) A mechanism for orbital period modulation in close binaries. ApJ 385:621

    Article  ADS  Google Scholar 

  • Applegate JH, Patterson J (1987) Magnetic activity, tides, and orbital period changes in close binaries. ApJ 322:L99

    Article  ADS  Google Scholar 

  • Barlow BN, Wade RA, Liss SE (2012) The Rømer delay and mass ratio of the sdB+dM binary 2M 1938+4603 from Kepler eclipse timings. ApJ 753(2):101

    Article  ADS  Google Scholar 

  • Bear E, Soker N (2014) First- versus second-generation planet formation in post-common envelope binary (PCEB) planetary systems. MNRAS 444(2):1698–1704

    Article  ADS  Google Scholar 

  • Beuermann K, Hessman FV, Dreizler S et al (2010) Two planets orbiting the recently formed post-common envelope binary NN Serpentis. A&A 521:L60

    Article  ADS  Google Scholar 

  • Beuermann K, Buhlmann J, Diese J et al (2011) The giant planet orbiting the cataclysmic binary DP Leonis. A&A 526:A53

    Article  ADS  Google Scholar 

  • Beuermann K, Dreizler S, Hessman FV, Deller J (2012) The quest for companions to post-common envelope binaries. III. A reexamination of <ASTROBJ>HW Virginis</ASTROBJ>. A&A 543:A138

    Google Scholar 

  • Bours MCP, Marsh TR, Parsons SG et al (2016) Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work. MNRAS 460(4):3873–3887

    Article  ADS  Google Scholar 

  • Brinkworth CS, Marsh TR, Dhillon VS, Knigge C (2006) Detection of a period decrease in NN Ser with ULTRACAM: evidence for strong magnetic braking or an unseen companion. MNRAS 365(1):287–295

    Article  ADS  Google Scholar 

  • Brown AJ, Parsons SG, Littlefair SP et al (2022) Characterizing eclipsing white dwarf M dwarf binaries from multiband eclipse photometry. MNRAS 513(2):3050–3064

    Article  ADS  Google Scholar 

  • Brown AJ, Parsons SG, van Roestel J et al (2023) Photometric follow-up of 43 new eclipsing white dwarf plus main-sequence binaries from the ZTF survey. MNRAS 521(2):1880–1896

    Article  ADS  Google Scholar 

  • Brown-Sevilla SB, Nascimbeni V, Borsato L et al (2021) A new photometric and dynamical study of the eclipsing binary star HW Virginis. MNRAS 506(2):2122–2135

    Article  ADS  Google Scholar 

  • Burdge KB, Prince TA, Fuller J et al (2020) A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources. ApJ 905(1):32

    Article  ADS  Google Scholar 

  • Copperwheat CM, Morales-Rueda L, Marsh TR, Maxted PFL, Heber U (2011) Radial-velocity measurements of subdwarf B stars. MNRAS 415(2):1381–1395

    Article  ADS  Google Scholar 

  • Dhillon VS, Marsh TR, Stevenson MJ et al (2007) ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. MNRAS 378(3):825–840

    Article  ADS  Google Scholar 

  • Dhillon VS, Bezawada N, Black M et al (2021) HiPERCAM: a quintuple-beam, high-speed optical imager on the 10.4-m Gran telescopio canarias. MNRAS 507(1):350–366

    Article  ADS  Google Scholar 

  • Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333(6049):1602

    Article  ADS  Google Scholar 

  • Dvorak R (1982) Planetenbahnen in Doppelsternsystemen. Oesterreichische Akad Wiss Math naturwissenschaftliche Klasse Sitzungsberichte Abteilung 191(10):423–437

    ADS  MathSciNet  Google Scholar 

  • Er H, Özdönmez A, Nasiroglu I (2021) New observations of the eclipsing binary system NY Vir and its candidate circumbinary planets. MNRAS 507(1):809–817

    Article  ADS  Google Scholar 

  • Esmer EM, Baştürk Ö, Hinse TC, Selam SO, Correia ACM (2021) Revisiting the analysis of HW Virginis eclipse timing data. I. A frequentist data modeling approach and a dynamical stability analysis. A&A 648:A85

    Google Scholar 

  • Farihi J, Parsons SG, Gänsicke BT (2017) A circumbinary debris disk in a polluted white dwarf system. Nat Astron 1:0032

    Article  ADS  Google Scholar 

  • Gänsicke BT, Koester D, Farihi J et al (2012) The chemical diversity of exo-terrestrial planetary debris around white dwarfs. MNRAS 424(1):333–347

    Article  ADS  Google Scholar 

  • Goździewski K, Nasiroglu I, Słowikowska A et al (2012) On the HU Aquarii planetary system hypothesis. MNRAS 425(2):930–949

    Article  ADS  Google Scholar 

  • Goździewski K, Słowikowska A, Dimitrov D et al (2015) The HU Aqr planetary system hypothesis revisited. MNRAS 448(2):1118–1136

    Article  ADS  Google Scholar 

  • Guinan EF, Ribas I (2001) The best brown dwarf yet? A companion to the hyades eclipsing binary V471 Tauri. ApJ 546(1):L43–L47

    Article  ADS  Google Scholar 

  • Han ZT, Qian SB, Zhu LY et al (2018) DE CVn: an eclipsing post-common envelope binary with a circumbinary disk and a giant planet. ApJ 868(1):53

    Article  ADS  Google Scholar 

  • Harding LK, Hallinan G, Milburn J et al (2016) CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. MNRAS 457(3):3036–3049

    Article  ADS  Google Scholar 

  • Hardy A, Schreiber MR, Parsons SG et al (2015) The first science results from sphere: disproving the predicted brown dwarf around V471 Tau. ApJ 800(2):L24

    Article  ADS  Google Scholar 

  • Hermes JJ (2013) Complications to the planetary hypothesis for GD 66. In: American Astronomical Society Meeting Abstracts #221, American Astronomical Society Meeting Abstracts, vol 221, p 424.04

    Google Scholar 

  • Hermes JJ, Kilic M, Brown WR et al (2012) Rapid orbital decay in the 12.75-minute binary white dwarf J0651+2844. ApJ 757(2):L21

    Google Scholar 

  • Hon M, Huber D, Rui NZ et al (2023) A close-in giant planet escapes engulfment by its star. Nature 618(7967):917–920

    Article  ADS  Google Scholar 

  • Horner J, Hinse TC, Wittenmyer RA, Marshall JP, Tinney CG (2012) A dynamical analysis of the proposed circumbinary HW Virginis planetary system. MNRAS 427(4):2812–2823

    Article  ADS  Google Scholar 

  • Horner J, Wittenmyer RA, Hinse TC et al (2013) A detailed dynamical investigation of the proposed QS Virginis planetary system. MNRAS 435(3):2033–2039

    Article  ADS  Google Scholar 

  • ibanoǧlu C, Evren S, Taş G, Çakırlı Ö (2005) New findings based on long-term photometric observations of the eclipsing binary V471 Tauri. MNRAS 360(3):1077–1084

    Google Scholar 

  • Ivanova N, Justham S, Chen X et al (2013) Common envelope evolution: where we stand and how we can move forward. A&A Rev 21:59

    Article  ADS  Google Scholar 

  • Jensen KA, Swank JH, Petre R et al (1986) EXOSAT observations of V471 Tauri: a 9.25 minute white dwarf pulsation and orbital phase dependent x-ray dips. ApJ 309:L27

    Google Scholar 

  • Khangale ZN, Potter SB, Kotze EJ, Woudt PA, Breytenbach H (2019) High-speed photometry of the eclipsing polar UZ Fornacis. A&A 621:A31

    Article  ADS  Google Scholar 

  • Kluska J, Van Winckel H, Coppée Q et al (2022) A population of transition disks around evolved stars: Fingerprints of planets. Catalog of disks surrounding Galactic post-AGB binaries. A&A 658:A36

    Google Scholar 

  • Kundra E, Hambálek Ľ, Vanaverbeke S et al (2022) Variability of eclipse timing: the case of V471 Tauri. MNRAS 517(4):5358–5367

    Article  ADS  Google Scholar 

  • Lagos F, Schreiber MR, Zorotovic M et al (2021) WD 1856 b: a close giant planet around a white dwarf that could have survived a common envelope phase. MNRAS 501(1):676–682

    Article  ADS  Google Scholar 

  • Lanza AF (2020) Internal magnetic fields, spin-orbit coupling, and orbital period modulation in close binary systems. MNRAS 491(2):1820–1831

    ADS  Google Scholar 

  • Lee JW, Kim SL, Kim CH et al (2009) The sdB+M eclipsing system HW Virginis and its circumbinary planets. AJ 137(2):3181–3190

    Article  ADS  Google Scholar 

  • Lohsen E (1974) Period variations of the white dwarf eclipsing binary BD +16 516. A&A 36:459–460

    ADS  Google Scholar 

  • Mai X, Mutel RL (2022) Eclipse timing modelling of three post-common envelope binaries: hybrid solutions. MNRAS 513(2):2478–2490

    Article  ADS  Google Scholar 

  • Marsh TR, Pringle JE (1990) Changes in the orbital periods of close binary stars. ApJ 365:677

    Article  ADS  Google Scholar 

  • Marsh TR, Parsons SG, Bours MCP et al (2014) The planets around NN Serpentis: still there. MNRAS 437(1):475–488

    Article  ADS  Google Scholar 

  • Martin DV, El-Badry K, Hodžić VK et al (2021) TOI-1259Ab – a gas giant planet with 2.7 per cent deep transits and a bound white dwarf companion. MNRAS 507(3):4132–4148

    Article  ADS  Google Scholar 

  • Martin RG, Livio M, Palaniswamy D (2016) Why are pulsar planets rare? ApJ 832(2):122

    Article  ADS  Google Scholar 

  • Matese JJ, Whitmire DP (1983) Alternate period changes in close binary systems. A&A 117:L7–L9

    ADS  Google Scholar 

  • Menzies JW, Marang F (1986) A new B-subdwarf eclipsing binary with an extremely short period. In: Hearnshaw JB Cottrell PL (eds) Instrumentation and research programmes for small telescopes, vol 118. Springer, Berlin, p 305

    Chapter  Google Scholar 

  • Muñoz DJ, Petrovich C (2020) Kozai migration naturally explains the white dwarf planet WD1856 b. ApJ 904(1):L3

    Article  ADS  Google Scholar 

  • Mustill AJ, Marshall JP, Villaver E et al (2013) Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. MNRAS 436(3):2515–2521

    Article  ADS  Google Scholar 

  • Navarrete FH, Schleicher DRG, Käpylä PJ et al (2020) Magnetohydrodynamical origin of eclipsing time variations in post-common-envelope binaries for solar mass secondaries. MNRAS 491(1):1043–1056

    ADS  Google Scholar 

  • Navarrete FH, Käpylä PJ, Schleicher DRG, Ortiz CA, Banerjee R (2022a) Origin of eclipsing time variations: contributions of different modes of the dynamo-generated magnetic field. A&A 663:A90

    Article  ADS  Google Scholar 

  • Navarrete FH, Schleicher DRG, Käpylä PJ, Ortiz-Rodríguez CA, Banerjee R (2022b) Origin of eclipsing time variations in post-common-envelope binaries: role of the centrifugal force. A&A 667:A164

    Article  ADS  Google Scholar 

  • Nelson B, Young A (1970) A New Eclipsing Binary Containing a Very Hot White Dwarf. PASP 82(487):699

    Article  ADS  Google Scholar 

  • O’Donoghue D, Koen C, Kilkenny D et al (2003) The DA+dMe eclipsing binary EC13471-1258: its cup runneth over …just. MNRAS 345(2):506–528

    Article  ADS  Google Scholar 

  • O’Donoghue D, Buckley DAH, Balona LA et al (2006) First science with the Southern African Large Telescope: peering at the accreting polar caps of the eclipsing polar SDSS J015543.40+002807.2. MNRAS 372(1):151–162

    Article  ADS  Google Scholar 

  • Oshagh M, Heller R, Dreizler S (2017) How eclipse time variations, eclipse duration variations, and radial velocities can reveal S-type planets in close eclipsing binaries. MNRAS 466(4):4683–4691

    ADS  Google Scholar 

  • Parsons SG, Marsh TR, Copperwheat CM et al (2010a) Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis. MNRAS 402(4):2591–2608

    Article  ADS  Google Scholar 

  • Parsons SG, Marsh TR, Copperwheat CM et al (2010b) Orbital period variations in eclipsing post-common-envelope binaries. MNRAS 407(4):2362–2382

    Article  ADS  Google Scholar 

  • Parsons SG, Marsh TR, Bours MCP et al (2014) Timing variations in the secondary eclipse of NN Ser. MNRAS 438(1):L91–L95

    Article  ADS  Google Scholar 

  • Parsons SG, Hernandez MS, Toloza O et al (2023) The white dwarf binary pathways survey – IX. Three long period white dwarf plus subgiant binaries. MNRAS 518(3):4579–4594

    Article  ADS  Google Scholar 

  • Pulley D, Sharp ID, Mallett J, von Harrach S (2022) Eclipse timing variations in post-common envelope binaries: are they a reliable indicator of circumbinary companions? MNRAS 514(4):5725–5738

    Article  ADS  Google Scholar 

  • Qian SB, Dai ZB, Liao WP et al (2009) A Substellar Companion to the White Dwarf-Red Dwarf Eclipsing Binary NN Ser. ApJ 706(1):L96–L99

    Article  ADS  Google Scholar 

  • Qian SB, Liao WP, Zhu LY et al (2010) A giant planet in orbit around a magnetic-braking hibernating cataclysmic variable. MNRAS 401(1):L34–L38

    Article  ADS  Google Scholar 

  • Rattanamala R, Awiphan S, Komonjinda S et al (2023) Eclipse timing variations in the WD + dM eclipsing binary RR Cae. MNRAS 523(4):5086–5108

    Article  ADS  Google Scholar 

  • Sale O, Bogensberger D, Clarke F, Lynas-Gray AE (2020) Eclipse time variations in the post-common envelope binary V470 Cam. MNRAS 499(3):3071–3084

    Article  ADS  Google Scholar 

  • Schleicher DRG, Dreizler S (2014) Planet formation from the ejecta of common envelopes. A&A 563:A61

    Article  ADS  Google Scholar 

  • Schröder KP, Smith RC (2008) Distant future of the Sun and Earth revisited. MNRAS 386(1):155–163

    Article  ADS  Google Scholar 

  • Standing MR, Sairam L, Martin DV et al (2023) Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system. Nat Astron 7:702–714

    Article  ADS  Google Scholar 

  • Vaccaro TR, Wilson RE, Van Hamme W, Terrell D (2015) The V471 Tauri system: a multi-data-type probe. ApJ 810(2):157

    Article  ADS  Google Scholar 

  • van Roestel J, Kupfer T, Bell KJ et al (2021) ZTFJ0038+2030: a long-period eclipsing white dwarf and a substellar companion. ApJ 919(2):L26

    Article  ADS  Google Scholar 

  • Vanderbosch ZP, Clemens JC, Dunlap BH, Winget DE (2017) V471 Tauri: examining eclipse timing variations with two independent clocks. In: Tremblay PE, Gaensicke B Marsh T (eds) 20th European White Dwarf Workshop, Astronomical Society of the Pacific Conference Series, vol 509, pp 571–574

    Google Scholar 

  • Vanderburg A, Rappaport SA, Xu S et al (2020) A giant planet candidate transiting a white dwarf. Nature 585(7825):363–367

    Article  ADS  Google Scholar 

  • Völschow M, Banerjee R, Hessman FV (2014) Second generation planet formation in NN Serpentis? A&A 562:A19

    Article  ADS  Google Scholar 

  • Völschow M, Schleicher DRG, Perdelwitz V, Banerjee R (2016) Eclipsing time variations in close binary systems: planetary hypothesis vs. Applegate mechanism. A&A 587:A34

    Article  Google Scholar 

  • Vos J, Østensen RH, Vučković M, Van Winckel H (2017) The orbits of subdwarf-B + main-sequence binaries. III. The period-eccentricity distribution. A&A 605:A109

    Google Scholar 

  • Warner B (1988) Quasiperiodicity in cataclysmic variable stars caused by solar-type magnetic cycles. Nature 336(6195):129–134

    Article  ADS  Google Scholar 

  • Welsh WF, Orosz JA, Carter JA et al (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481(7382):475–479

    Article  ADS  Google Scholar 

  • Zhu LY, Qian SB, Fernández Lajús E, Wang ZH, Li LJ (2019) A close-in substellar object orbiting the sdOB-type eclipsing-binary system NSVS 14256825. Research in Astronomy and Astrophysics 19(9):134

    Article  ADS  Google Scholar 

  • Zorotovic M, Schreiber MR (2013) Origin of apparent period variations in eclipsing post-common-envelope binaries. A&A 549:A95

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank David Pulley for his kind permission to reproduce two of his figures. SGP acknowledges the support of a Science and Technology Facilities Council (STFC) Ernest Rutherford Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Parsons .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Parsons, S.G., Marsh, T.R. (2024). Circumbinary Planets Around Evolved Stars. In: Deeg, H.J., Belmonte, J.A. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_96-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_96-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Circumbinary Planets Around Evolved Stars
    Published:
    13 March 2024

    DOI: https://doi.org/10.1007/978-3-319-30648-3_96-2

  2. Original

    Circumbinary Planets Around Evolved Stars
    Published:
    04 October 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_96-1