Skip to main content

Space Missions for Exoplanet Science: Kepler/K2

Handbook of Exoplanets
  • 1 Accesses

Abstract

The Kepler Mission is a space observatory launched in 2009 designed to monitor 170,000 stars over a period of 4 years to explore the structure and diversity of planetary systems, in particular to determine the occurrence frequency of Earth-size and larger planets in and near the habitable zone (HZ) of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that were competitively selected, PI-directed, medium-cost missions.

The Kepler instrument is based on a 0.95 m aperture Schmidt-design telescope with a 113 sq. deg. FOV with 84 channels of CCD detectors. The spacecraft orbits the Sun in 53-week orbit and points at a single field of stars to avoid missing transits. It achieves a photometric precision of 10 ppm for bright, quiet stars for periods of several hours, i.e., the typical duration of planetary transits.

During the 4 years of its operation, an analysis of its data detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over 3458 confirmed planets, and 21 Earth-size and super-Earth-size planets in the HZ. These discoveries provide the information required for estimates of the occurrence frequency of planets in our galaxy. The mission results show that most stars have planets, many of these planets are similar in size to the Earth, and systems with several planets are common. In combination with radial velocity measurements, the Kepler results were able to distinguish rocky planets from planets that might be composed mostly of water or gas. The Kepler Mission also made major contributions to astrophysical sciences, including the detection of “heartbeat” stars, supernovae, and the interior structure and characteristics of red giant stars. At the end of its 4-year mission, the Kepler Mission was re-proposed as a community facility (“K2”) that provided high-precision photometric time-series data for tens of thousands of stars in each of 13 FOVs along the ecliptic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Basri G et al (2013) Comparison of Kepler photometric variability with the sun on different time scales. ApJ 769:37

    Article  ADS  Google Scholar 

  • Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler mission. PNAS 111, 1264B

    Google Scholar 

  • Batalha NM et al (2010) Selection, prioritization, and characteristics of Kepler target stars. ApJL 713:L109

    Article  ADS  Google Scholar 

  • Berger TA, Schlieder JE, Huber D (2023) The Gaia-Kepler-TESS-Host Stellar properties catalog: uniform physical parameters for 7993 host stars and 9324 planets. arXiv:2301.11338v1 [astro-ph.EP]

    Google Scholar 

  • Borucki WJ (2016) Kepler mission: development and overview. Rep Prog Phys 79:036901

    Article  ADS  Google Scholar 

  • Borucki WJ, Summers AL (1984) The photometric method of detecting other planetary systems. Icarus 58:121

    Article  ADS  Google Scholar 

  • Borucki WJ et al (1985) Detectability of extrasolar planetary transits. ApJ 291:852

    Article  ADS  Google Scholar 

  • Borucki WJ et al (1988a) A photometric approach to detecting Earth-size planets. ASSL 144:107B

    ADS  Google Scholar 

  • Borucki WJ et al (1988b) Tests of a multichannel photometer based on silicon diode detectors. NASA Conference Publication, NASA CP-10015, 47–55

    Google Scholar 

  • Borucki WJ et al (1996) FRESIP: a mission to determine the character and frequency of extra-solar planets around sun-like stars. Ap&SS 241:111B

    Article  ADS  Google Scholar 

  • Borucki WJ et al (2001) The vulcan photometer: a dedicated photometer for extrasolar planet searches. PASP 113:439–451

    Article  ADS  Google Scholar 

  • Borucki WJ et al (2013) Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science 340:587

    Article  ADS  Google Scholar 

  • Brown TM et al (2011) Kepler input catalog: photometric calibration and stellar classification. AJ 142:112

    Article  ADS  Google Scholar 

  • Bryson ST et al (2013) Identification of background false positives from Kepler data. PASP 125:889

    Article  ADS  Google Scholar 

  • Bryson ST, Kunimoto M, Kopparapu R et al (2021) The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data. AJ 161:36B

    Article  ADS  Google Scholar 

  • Caldwell DA et al (2010) Instrument performance in Kepler’s first months. ApJL 713:L92

    Article  ADS  Google Scholar 

  • Chaplin WJ, Miglio A (2013) Asteroseismology of solar-type and red-giant stars. Annu Rev Astron Astrophys 51:353–392

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard J, Silva Aguirre V, Cassisi S et al (2020) The Aarhus red giants challenge II. Stellar oscillations in the red giant branch phase. A&A 635:A165

    Article  ADS  Google Scholar 

  • Christiansen JL, Sakhee B, Zink JK et al (2022) Scaling K2.V. Statistical validation of 60 new exo-planets from K2 Campaigns 2-18. AJ 163:244

    Article  ADS  Google Scholar 

  • Couglin J et al (2014) Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1–Q12 data. AJ 147:119

    Article  ADS  Google Scholar 

  • Gilliland RL (2011) Asteroseismology of cool dwarfs and giants with Kepler. ASPC 448:167G

    ADS  Google Scholar 

  • Gilliland RL et al (2010) Initial characteristics of Kepler short cadence data. ApJL 713:L160

    Article  ADS  Google Scholar 

  • Gilliland RL et al (2011) Kepler mission stellar and instrument noise properties. ApJS 197:6

    Article  ADS  Google Scholar 

  • Gillon M et al (2017) Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533:221–224

    Article  ADS  Google Scholar 

  • Gonález-Cuesta L, Mathur S, García R et al (2023) Multi-campaign asteroseismic analysis of eight solar-like pulsating stars observed by the K2 Mission. A&A 674:A106

    Article  ADS  Google Scholar 

  • Howell SB et al (2014) The K2 mission: characterization and early results. PASP 126:398–408

    Article  ADS  Google Scholar 

  • Huber D et al (2014) Revised stellar properties of Kepler targets for the quarter 1–16 transit detection run. ApJS 211:2

    Article  ADS  Google Scholar 

  • Jenkins JM (2002) The impact of solar-like variability on the detectability of transiting terrestrial planets. ApJ 575:493–505

    Article  ADS  Google Scholar 

  • Jenkins JM et al (2002) Some tests to establish confidence in planets discovered by transit photometry. ApJ 564:495–507

    Article  ADS  Google Scholar 

  • Jenkins JM et al (2010a) Overview of the Kepler science processing pipeline. ApJL 713:L87

    Article  ADS  Google Scholar 

  • Jenkins JM et al (2010b) Initial characteristics of Kepler long cadence data for detecting transiting planets. ApJL 713:L12

    Article  Google Scholar 

  • Jenkins JM et al (2010c) Transiting planet search in the Kepler pipeline. SPIE 7740:77400D

    Google Scholar 

  • Kaltenegger L et al (2013) Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and -62f. ApJL 775:L47

    Article  ADS  Google Scholar 

  • Kasting JE (1993) Habitable zones around main sequence stars. Icarus 101:108

    Article  ADS  Google Scholar 

  • Kecskeméthy V, Kiss C, Szakáts R et al (2023) Light curves of Trans-Neptunian objects from the K2 Mission of the Kepler Space Telescope. ApJ 264:18

    Google Scholar 

  • Kepler Data Characteristic Handbook (KSCI-19040) (2016) Section 5.2, Milkuski archive at STScI. http://archive.stsci.edu/kepler

  • Kepler Data Processing Handbook (KSCI-19081) (2017) Milkuski archive at STScI. http://archive.stsci.edu/kepler

  • Kepler Instrument Handbook; (KSCI-19033) (2016) Milkuski archive at STScI. http://archive.stsci.edu/kepler

  • Koch DG et al (2010) Kepler mission design, realized photometric performance, and early science. ApJL 713:L79

    Article  ADS  Google Scholar 

  • Kopparapu RK et al (2014) Habitable zones around main-sequence stars: dependence on planetary mass. ApJL:787, L29

    Google Scholar 

  • Leger A et al (2004) A new family of planets? “ocean planets”. Icarus 169:499

    Article  ADS  Google Scholar 

  • Lissauer JJ et al (2014) Validation of Kepler’s multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. ApJ 784:44L

    Article  ADS  Google Scholar 

  • Lissauer, JJ et al (2023) Exoplanet Science from Kepler. arXiv:2311:04981

    Google Scholar 

  • Luna GJM (2023) K2 and TESS observations of symbiotic X-ray binaries: GX 1+4 and IGRJ 16194-2810. A&A 676:L2

    Article  ADS  Google Scholar 

  • Marcy GW et al (2014) Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS 210:20

    Article  ADS  Google Scholar 

  • Masuda K (2014) Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet event. ApJ 783:53

    Article  ADS  Google Scholar 

  • Montet BJ et al (2015) Stellar and planetary properties of K2 campaign 1 candidates and validation of 18 systems, including a planet receiving Earth-like insolation. ApJ 809:25

    Article  ADS  Google Scholar 

  • Morton T et al (2016) False positive probabilities for all Kepler objects of interest: 1284 newly validate planets and 428 likely false positives. ApJ 822:86

    Article  ADS  Google Scholar 

  • Mullally F et al (2015) Planetary candidates observed by Kepler VI. Planet sample from Q1–Q16 (47 months). ApJS 217:31

    Article  ADS  Google Scholar 

  • Nesvorny D, Morbidelli A (2008) Mass and orbit determination from transit timing variations of exoplanets. ApJ 688:636

    Article  ADS  Google Scholar 

  • Orosz JA et al (2012) Kepler-47: a transiting circumbinary multiplanet system. Science 337:1511O

    Article  ADS  Google Scholar 

  • Quintana EV et al (2010) Pixel-level calibration in the Kepler science operations center pipeline. SPIE 7740:77401X

    Google Scholar 

  • Quintana EV et al (2014) An Earth-sized planet in the habitable zone of a cool star. Science 344:277

    Article  ADS  Google Scholar 

  • Robinson LB et al (1995) Test of CCD limits for differential photometry. PASP 107:1094–1098

    Article  ADS  Google Scholar 

  • Rosenblatt F (1971) A two-color photometric method for detection of extra solar planetary systems. Icarus 14:71R

    Article  ADS  Google Scholar 

  • Rowe JF et al (2014) Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ 784:45

    Article  ADS  Google Scholar 

  • Shappee BJ, Holoien W-S, Drout MR et al (2020) Seeing double: ASASSN-18bt exhibits a two-component rise in the early-time K2 light curve. ApJ 870:13

    Article  ADS  Google Scholar 

  • Smith JC et al (2012) Kepler presearch data conditioning II – a Bayesian approach to systematic error correction. PASP 124:919

    Article  Google Scholar 

  • Stumpe MC et al (2012) Kepler presearch data conditioning I – architecture and correction in Kepler light curves. PASP 124:985S

    Article  ADS  Google Scholar 

  • Stumpe MC et al (2014) Multiscale systematic error correction via wavelet-based band splitting in Kepler data. PASP 126:100S

    Article  ADS  Google Scholar 

  • Twicken JD et al (2010) Photometric analysis in the Kepler science operations center pipeline. SPIE 7740E:23T

    Google Scholar 

  • Welsh W et al (2015) Kepler 453b – the 10th Kepler transiting circumbinary planet. ApJ 809:26W

    Article  ADS  Google Scholar 

  • Willson RC et al (1981) Observations of solar irradiance variability. Science 211:700

    Article  ADS  Google Scholar 

  • Zink JK, Hardegree-Ullman KK, Christiansen JL et al (2023) Scaling K2.VI. Reduced small planet occurrence in high-galactic-amplitude stars. AJ 165:262

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Kepler was competitively selected as the tenth Discovery mission with funding provided by NASA’s Science Mission Directorate. The mission success was accomplished through the strenuous efforts of BATC personnel to develop the instrument and spacecraft; the space controllers at Laboratory for Atmospheric and Space Physics; the managers at NASA HQ, Ames, Marshall, and Jet Propulsion Laboratory; the Kepler team that analyzed the data and provided the science results; the thousands of members of the worldwide science community who were responsible for many of the exciting discoveries; the SETI Institute and Lawrence Hall of Science personnel who provided education and public outreach; and the teams at Space Telescope Science Institute and California Institute of Technology who archived and provided the data to the community. Other organizations that made important contributions to the mission include Carnegie Institute of Washington; Harvard-Smithsonian Center for Astrophysics; W. M. Keck Observatory; Lick Observatory, University of California; Lowell Observatory; NASA Goddard Space Flight Center; NASA Kennedy Spaceflight Center; University of Aarhus; University of California, Berkeley; University of Texas, Austin; and University of Washington, Seattle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Borucki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Borucki, W.J. (2024). Space Missions for Exoplanet Science: Kepler/K2. In: Deeg, H.J., Belmonte, J.A. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_80-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_80-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Missions for Exoplanet Science: Kepler/K2
    Published:
    12 May 2024

    DOI: https://doi.org/10.1007/978-3-319-30648-3_80-2

  2. Original

    Space Missions for Exoplanet Science: Kepler/K2
    Published:
    27 July 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_80-1