Skip to main content

Direct Exoplanet Investigation Using Interstellar Space Probes

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Exoplanets
  • 8 Accesses

Abstract

Experience in exploring our own solar system has shown that direct investigation of planetary bodies using space probes invariably yields scientific knowledge not otherwise obtainable. In the case of exoplanets, such direct investigation may be required to confirm inferences made by astronomical observations, especially with regard to planetary interiors, surface processes, geological evolution, and possible biology. This will necessitate transporting sophisticated scientific instruments across interstellar space, and some proposed methods for achieving this with flight times measured in decades are reviewed. It is concluded that, with the possible exception of very lightweight (and thus scientifically limited) probes accelerated to velocities of ∼0.1c with powerful Earth-based lasers, achieving such a capability may have to wait until the development of a space-based civilization capable of leveraging the material and energy resources of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ballmer MD, Noack L (2021) The diversity of exoplanets: from interior dynamics to surface expressions. Elements 17:245–250

    Article  ADS  Google Scholar 

  • Bond A (1974) An analysis of the potential performance of the ram augmented interstellar rocket. JBIS 27:674–685

    ADS  Google Scholar 

  • Bond A (1978) Project Daedalus: target system encounter protection. JBIS 31:S123–S125

    ADS  Google Scholar 

  • Bond A, Martin AR (1986) Project Daedalus reviewed. JBIS 39:385–390

    ADS  Google Scholar 

  • Bond A, Martin AR, Buckland RA et al (1978) Project Daedalus: final report of the BIS starship study. JBIS 31:S1–S192

    Google Scholar 

  • Bussard RW (1960) Galactic matter and interstellar flight. Astronaut Acta 6:179–194

    Google Scholar 

  • Cockell CS (2014) Habitable worlds with no signs of life. Phil Trans R Soc A A372:20130082

    Article  ADS  Google Scholar 

  • Cockell CS, Léger A, Fridlund M et al (2009) Darwin: a mission to detect and search for life on extrasolar planets. Astrobiology 9:1–22

    Article  ADS  Google Scholar 

  • Crane L, Westmoreland S (2009) Are black hole starships possible? ArXiv e-print 0908:1803

    Google Scholar 

  • Crawford IA (1990) Interstellar travel: a review for astronomers. QJRAS 31:377–400

    ADS  Google Scholar 

  • Crawford IA (2009) The astronomical, astrobiological and planetary science case for interstellar spaceflight. JBIS 62:415–421

    ADS  Google Scholar 

  • Crawford IA (2011) Project Icarus: a review of local interstellar medium properties of relevance for space missions to the nearest stars. Acta Astronaut 68:691–699

    Article  ADS  Google Scholar 

  • Crawford IA (2016a) Project Icarus: preliminary thoughts on the selection of probes and instruments for an Icarus-style interstellar mission. JBIS 69:4–10

    ADS  Google Scholar 

  • Crawford IA (2016b) The long term scientific benefits of a space economy. Space Policy 37:58–61

    Article  ADS  Google Scholar 

  • Defrère D, Léger A, Absil O et al (2018) Space-based infrared interferometry to study exoplanetary atmospheres. Exp Astron 46:543–560

    Article  ADS  Google Scholar 

  • Dewar JA (2007) To the end of the solar system: the story of the nuclear rocket. Apogee Books, Burlington

    Google Scholar 

  • Dressing CD, Charbonneau D, Dumusque X et al (2015) The mass of Kepler-93b and the composition of terrestrial planets. ApJ 800:135

    Article  ADS  Google Scholar 

  • Dyson FJ (1968) Interstellar transport. Phys Today 21(10):41–45

    Article  Google Scholar 

  • Enerdata (2016) Global energy statistical yearbook. https://yearbook.enerdata.net/world-electricity-production-map-graph-and-data.html

  • Forward RL (1962) Pluto: last stop before the stars. Sci Dig 52(2):70–75

    Google Scholar 

  • Forward RL (1982) Antimatter propulsion JBIS 35:391–395

    Google Scholar 

  • Forward RL (1984) Round-trip interstellar travel using laser-pushed lightsails. J Spacecr Rocket 21:187–195

    Article  Google Scholar 

  • Freeland RM (2013) Project Icarus: fission-fusion hybrid fuel for interstellar propulsion. JBIS 66:290–296

    ADS  Google Scholar 

  • Freeland RM, Lamontagne M (2015) Firefly Icarus: an unmanned interstellar probe using z-pinch fusion propulsion. JBIS 68:68–80

    ADS  Google Scholar 

  • French JR (2013) Project Icarus: a review of the Daedalus main propulsion system. JBIS 66:248–251

    ADS  Google Scholar 

  • Frisbee RH (2009) Limits of interstellar flight technology. In: Millis MG, Davis EW (eds) Frontiers of propulsion science. American Institute of Aeronautics and Astronautics, Reston, pp 31–126

    Google Scholar 

  • Froning HD (1986) Use of vacuum energies for interstellar space flight. JBIS 39:410–415

    ADS  Google Scholar 

  • Gaidos G, Lewis RA, Meyer K et al (1999) AIMStar: antimatter initiated microfusion for precursor interstellar missions. AIP Conf Proc 458:954–959

    Article  ADS  Google Scholar 

  • Hartmann WK (1985) The resource base in our solar system. In: Finney BR, Jones EM (eds) Interstellar migration and the human experience. University of California Press, Berkeley, pp 26–41

    Google Scholar 

  • Hegde S, Paulino-Lima IG, Kent R (2015) Surface biosignatures of exo-earths: remote detection of extraterrestrial life. PNAS 112:3886–3891

    Article  ADS  Google Scholar 

  • Heller R, Hippke M (2017) Deceleration of high-velocity interstellar photon sails into bound orbits at alpha Centauri. ApJ Lett 835:L32

    Article  ADS  Google Scholar 

  • Heller R, Hippke M, Kervella P (2017) Optimized trajectories to the nearest stars using lightweight high-velocity photon sails. Astron J 154:115

    Article  ADS  Google Scholar 

  • Heppenheimer TA (1978) On the infeasibility of interstellar ramjets. JBIS 31:222–224

    ADS  Google Scholar 

  • Hippke M (2019) Interstellar communication. I. Maximized data rate for lightweight space-probes. Internat J Astrobiology 18:267–279

    Article  ADS  Google Scholar 

  • Impey C (2022) Life beyond earth: how will it first be detected? Acta Astronaut 197:387–398

    Article  ADS  Google Scholar 

  • Jackson AA, Whitmire DP (1978) A laser-powered interstellar rocket. JBIS 32:335–337

    ADS  Google Scholar 

  • Kaltenegger L, Henning WG, Sasselov DD (2010a) Detecting volcanism on extrasolar planets. AJ 140:1370–1380

    Article  ADS  Google Scholar 

  • Kaltenegger L, Selsis F, Fridlund M et al (2010b) Deciphering spectral fingerprints of habitable exoplanets. Astrobiology 10:89–102

    Article  ADS  Google Scholar 

  • Knoll AH (2004) Life on a young planet. Princeton University Press, Princeton

    Google Scholar 

  • Labeyrie A (2021) Lunar optical interferometry and hypertelescope for direct imaging at high resolution. Phil Trans R Soc A A379:20190570

    Article  ADS  Google Scholar 

  • Lafleur T (2022) Evaluation of solid-core thermal antimatter propulsion concepts. Acta Astronaut 191:417–430

    Article  ADS  Google Scholar 

  • Landgraf M, Baggaley WJ, Grün E et al (2000) Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J Geophys Res 105:10343–10352

    Article  ADS  Google Scholar 

  • Lawton AT, Wright PP (1978) Project Daedalus: the vehicle communications system. JBIS 31:S163–S171

    Google Scholar 

  • Lesh JR, Ruggier CJ, Cesarone RJ (1996) Space communications technologies for interstellar missions. JBIS 49:7–14

    Google Scholar 

  • Lewis JS, Matthews MS, Guerrieri ML (eds) (1993) Resources of near earth space. Tucson University Press, Tucson

    Google Scholar 

  • Long KF (2012) Deep space propulsion: a roadmap to interstellar flight. Springer, New York

    Book  Google Scholar 

  • Long KF (2016) Project Icarus: development of fusion-based space propulsion for interstellar missions. JBIS 69:289–294

    ADS  Google Scholar 

  • Long KF (2022) Interstellar propulsion using laser-driven inertial confinement fusion physics. Universe 8:421

    Article  ADS  Google Scholar 

  • Lubin P (2016) A roadmap to interstellar flight. JBIS 69:40–72

    ADS  Google Scholar 

  • Lubin P, Hettle W (2020) The path to interstellar flight. Acta Futura 12:9–44. https://zenodo.org/record/3874099#.ZAIgcy-l1pQ

    ADS  Google Scholar 

  • Madhusudhan N, Lee KKM, Mousis O (2012) A possible carbon-rich interior in super-earth 55 Cancri e. ApJ 759:L40

    Article  ADS  Google Scholar 

  • Mallove EF, Matloff GL (1989) The starflight handbook: a pioneer’s guide to interstellar travel. Wiley, New York

    Book  Google Scholar 

  • Martin AR (1973) Magnetic intake limitations on interstellar ramjets. Astronaut Acta 18:1–10

    Google Scholar 

  • Martin AR (1978) Project Daedalus: bombardment by interstellar material and its effects on the vehicle. JBIS 31:S116–S121

    ADS  Google Scholar 

  • Marx G (1965) Mechanical efficiency of interstellar vehicles. Astronaut Acta 9:131–139

    Google Scholar 

  • Marx G (1966) Interstellar vehicle propelled by terrestrial laser beam. Nature 211:22–23

    Article  ADS  Google Scholar 

  • Matloff GL (1979) The interstellar ramjet acceleration runway. JBIS 32:219–220

    ADS  Google Scholar 

  • Matloff GL (2010) Deep-space probes: to the outer solar system and beyond. Springer-Praxis, New York

    Google Scholar 

  • Matloff GL (2013) The speed limit for graphene interstellar photon sails. JBIS 66:377–380

    ADS  Google Scholar 

  • Mauldin JH (1992) Prospects for interstellar travel. Science and technology series, vol 80. American Astronautical Society, San Diego

    Google Scholar 

  • Messerschmitt DG, Lubin P, Morrison I (2020) Challenges in scientific data communication from low-mass interstellar probes. Astrophys J Suppl 249:36

    Article  ADS  Google Scholar 

  • Metzger PT, Muscatello A, Mueller RP, Mantovani J (2013) Affordable, rapid bootstrapping of space industry and solar system civilisation. J Aerosp Eng 26:18–29

    Article  Google Scholar 

  • Millis MG, Davis EW (eds) (2009) Frontiers of propulsion science. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  • Milne P, Lamontagne M, Freeland RM (2016) Project Icarus: communications data link designs between Icarus and earth and between Icarus spacecraft. JBIS 69:278–288

    ADS  Google Scholar 

  • Morgan DL (1982) Concepts for the design of an antimatter annihilation rocket. JBIS 35:405–412

    ADS  Google Scholar 

  • Perakis N, Hein AM (2016) Combining magnetic and electric sails for interstellar deceleration. Acta Astronaut 128:13–20

    Article  ADS  Google Scholar 

  • Perkins LJ, Orth CD, Tabak M (2004) On the utility of antiprotons as drivers for inertial confinement fusion. Nucl Fusion 44:1097–1117

    Article  ADS  Google Scholar 

  • Rappaport S, Sanchis-Ojeda R, Rogers LA et al (2013) The Roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2 hr planet KOI 1843.03. ApJ 773:L15

    Article  ADS  Google Scholar 

  • Rustamkulov Z, Sing DK, Mukhergee S et al (2023) Early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614:659–663

    Article  ADS  Google Scholar 

  • Schneider J, Léger A, Fridlund M et al (2010) The far future of exoplanet direct characterisation. Astrobiology 10:121–126

    Article  ADS  Google Scholar 

  • Schneider J, Silk J, Vakili F (2021) OWL-moon in 2050 and beyond. Phil Trans R Soc A A379:20200187

    Article  ADS  Google Scholar 

  • Seager S (2014) The future of spectroscopic life detection on exoplanets. PNAS 111:12634–12640

    Article  ADS  Google Scholar 

  • Semyonov OG (2014) Relativistic rocket: dream and reality. Acta Astronaut 99:52–70

    Article  ADS  Google Scholar 

  • Semyonov OG (2017) Diamagnetic antimatter storage. Acta Astronaut 136:190–203

    Article  ADS  Google Scholar 

  • Shepherd LR (1952) Interstellar flight. JBIS 11:149–167

    Google Scholar 

  • Singer CE (1980) Interstellar propulsion using a pellet stream for momentum transfer. JBIS 33:107–116

    ADS  Google Scholar 

  • Stamenkovic V, Seager S (2016) Emerging possibilities and insuperable limitations of exogeophysics: the example of plate tectonics. ApJ 825:78

    Article  ADS  Google Scholar 

  • Strong J (1965) Flight to the stars: an inquiry into the feasibility of interstellar flight. Temple Press, London

    Google Scholar 

  • Swinney RW, Long KF, Galea P (2011) Project Icarus: son of Daedalus – flying closer to another star: a technical update and programme review. JBIS 64:17–23

    ADS  Google Scholar 

  • Swinney RW, Freeland RM, Lamontagne M (2020) Project Icarus: designing a fusion powered interstellar probe. Acta Futura 12:47–59. https://zenodo.org/record/3747274#.ZAIdgC-l1pQ

    Google Scholar 

  • Tough A (1998) Small smart interstellar probes. JBIS 51:167–174

    Google Scholar 

  • Webb GM (1978) Project Daedalus: some principles for the design of a payload for an interstellar flyby mission. JBIS 31:S149–S162

    ADS  Google Scholar 

  • White H, March P (2012) Advanced propulsion physics: harnessing the quantum vacuum. In: Nuclear and emerging technologies for space (2012), abstract 3082. https://www.lpi.usra.edu/meetings/nets2012/pdf/3082.pdf

  • Whitmire DP (1975) Relativistic spaceflight and the catalytic nuclear ramjet. Acta Astronaut 2:497–509

    Article  ADS  Google Scholar 

  • Whitmire DP, Jackson AA (1977) Laser powered interstellar ramjet. JBIS 30:223–226

    ADS  Google Scholar 

  • Wolczek O (1982) New conceptions of unmanned planetary exploration: extra-solar planetary systems. Acta Astronaut 9:529–531

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Crawford .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Crawford, I.A. (2023). Direct Exoplanet Investigation Using Interstellar Space Probes. In: Deeg, H.J., Belmonte, J.A. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_167-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_167-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Direct Exoplanet Investigation Using Interstellar Space Probes
    Published:
    14 September 2023

    DOI: https://doi.org/10.1007/978-3-319-30648-3_167-2

  2. Original

    Direct Exoplanet Investigation Using Interstellar Space Probes
    Published:
    18 August 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_167-1