Skip to main content

Future Exoplanet Research: Science Questions and How to Address Them

Handbook of Exoplanets
  • 448 Accesses

Abstract

Started approximately in the late 1980s, exoplanetology has up to now unveiled the main gross bulk characteristics of planets and planetary systems. In the future it will benefit from more and more large telescopes and advanced space missions. These instruments will dramatically improve their performance in terms of photometric precision, detection speed, multipixel imaging, high-resolution spectroscopy, allowing to go much deeper in the knowledge of planets.

Here we outline some science questions which should go beyond these standard improvements and how to address them.

Our prejudice is that one is never too speculative: experience shows that the speculative predictions initially not accepted by the community have been confirmed several years later (like spectrophotometry of transits or circumbinary planets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airapetian V et al (2017) Detecting the beacons of life with exo-life beacon space telescope (ELBST). In: Planetary science vision 2050 workshop, held 27–28 Feb and 1 Mar 2017, Washington, DC. LPI contribution no. 1989, id.8214

    Google Scholar 

  • Andrews J et al (2016) Exhumed hydrocarbon-seep authogenic carbonates from Zakynthos Island (Greece): concretions not archaeological remains. Mar Pet Geol 76:16

    Article  Google Scholar 

  • Anglada-Escudé G et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437

    Article  ADS  Google Scholar 

  • Apai D et al (2017) Exploring other worlds: science questions for future direct imaging missions (EXOPAG SAG15 Report). arxiv:1708.02821

    Google Scholar 

  • Arnold and Schneider (2004) The detectability of extrasolar planet surroundings. I. Reflected-light photometry of unresolved rings. Astron Astrophys 420:1153

    Google Scholar 

  • Arnold L (2005) Transit light-curve signatures of artificial objects. ApJ 627:534

    Article  ADS  Google Scholar 

  • Austin R (2016) Phys Today 69(12):42

    Article  ADS  Google Scholar 

  • Ballesteros F et al (2018) KIC 8462852: Will the Trojans return in 2021? MNRAS 473:L21

    Google Scholar 

  • Baltz E, Godolo P (1999) Searching for extragalactic planets. https://arxiv.org/abs/astro-ph/9909510. http://adsabs.harvard.edu/abs/2016AAS...22821705B

  • Barrelet E (2016) Direct illumination calibration of telescopes at the quantum precision limit. Astron Astrophys 594:A38. arXiv:1610.00474

    Article  ADS  Google Scholar 

  • Batygin K, Brown M (2016) Astron J 151:22

    Article  ADS  Google Scholar 

  • Beichman C et al (1999) The Terrestrial Planet Finder (TPF): a NASA origins program to search for habitable planets. JPL Publication, Pasadena. 99–3

    Google Scholar 

  • Bertaux J-L et al (2016) Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J Geophys Res Pap 121:1087

    Article  ADS  Google Scholar 

  • Bodman E, Quillen A (2015) KIC 8462852: transit of a large comet family. ApJ Lett 819:L34

    Article  ADS  Google Scholar 

  • Bolis R et al (2016) Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the super-Earths’ interiors. Geophys Res Lett 43:9475

    Article  ADS  Google Scholar 

  • Bond A, Martin A (1975) Project Daedalus: the origins and aims of the study. J Br Interplanet Soc 28:146

    ADS  Google Scholar 

  • Boss A (1995) Proximity of Jupiter-like planets to low-mass stars. Science 267:360

    Article  ADS  Google Scholar 

  • Boyajian T et al (2016) Planet hunters X. KIC 8462852 – where’s the flux? MNRAS 457:3988

    Article  ADS  Google Scholar 

  • Bracewell R, MacPhie R (1979) Searching for nonsolar planets. Icarus 38:136

    Article  ADS  Google Scholar 

  • Bray J, Nelles A (2016) Minimal prospects for radio detection of extensive air showers in the atmosphere of Jupiter. ApJ 825:129

    Article  ADS  Google Scholar 

  • Brieva AC et al (2016) ApJ C60 as a probe for astrophysical environments. arXiv:1605.08745

    Google Scholar 

  • Brisset J et al (2017) NanoRocks: design and performance of an experiment studying planet formation on the international space station. arXiv:1706.08625

    Google Scholar 

  • Brucalassi A et al (2016) Search for giant planets in M67 III: excess of hot Jupiters in dense open clusters. Astron Astrophys. ArXiv:1606.05247

    Google Scholar 

  • Burkhart B, Loeb A (2017) The detectability of radio auroral emission from Proxima b. ApJ Lett. Submitted. https://arxiv.org/abs/1706.07038

  • Cabrera J, Schneider J (2007) Detecting companions to extrasolar planets using mutual events. Astron Astrophys 464:1133

    Article  ADS  Google Scholar 

  • Cabrol N (2016) Alien mindscapes – a perspective on the search for extraterrestrial intelligence. Astrobiology 16:661. http://www.spaceref.com/news/viewpr.html?pid=49044

    Article  ADS  Google Scholar 

  • Cash W et al (2003) The new worlds observer: a new approach to observing extrasolar planets. Bull Am Astron Soc 35:1416. American Astronomical Society Meeting 203, id.130.06

    ADS  Google Scholar 

  • Cassan A, Ranc C (2016) Interferometric observation of microlensing events. MNRAS 458:2074

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard J et al (2011) The Stellar Imager (SI) – a mission to resolve stellar surfaces, interiors, and magnetic activity. J Phys Conf Ser 271:012085

    Article  Google Scholar 

  • Cridland A et al (2016) Composition of early planetary atmospheres I: connecting disk astrochemistry to the formation of planetary atmospheres. MNRAS. arXiv:1605.09407

    Google Scholar 

  • Crovisier J et al (2016) Comets at radio wavelengths. In: Proceedings of URSI France scientific days, “Probing matter with electromagnetic waves”, 24–25 Mar 2015, Paris. To be published in C. R. Physique arXiv:1606.06020

    Google Scholar 

  • Cuntz M, Guinan E (2016) About exobiology: the case for dwarf K stars. ApJ. arXiv:1606.09580

    Google Scholar 

  • De Pater I et al (2016) Peering through Jupiter’s clouds with radio spectral imaging. Science 352:1198

    Article  ADS  Google Scholar 

  • Dong C et al (2017) Is Proxima Centauri b habitable? A study of atmospheric loss. ApJ Lett 837:L26

    Article  ADS  Google Scholar 

  • Dravins D (2016) Intensity interferometry: optical imaging with kilometer baselines. In: SPIE 9907. https://arxiv.org/abs/1607.03490

  • Dumusque X et al (2012) An Earth-mass planet orbiting α Centauri B. Nature 491:207

    Article  ADS  Google Scholar 

  • Dumusque X et al (2017) Radial-velocity fitting challenge. II. First results of the analysis of the data set. Astron Astrophys 598:A133

    Article  Google Scholar 

  • Engelhardt J, Jedicke R, Vereš P et al (2017) An observational upper limit on the interstellar number density of asteroids and comets. Astron J 153:133

    Article  ADS  Google Scholar 

  • Evers CH et al (2016) Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature. https://doi.org/10.1038/nature17956

  • Fauchez TH et al (2017) The O2 A-band in fluxes and polarization of starlight reflected by Earth-like exoplanets. ApJ 842:41

    Article  ADS  Google Scholar 

  • Feng Y et al (2016) The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. ApJ arXiv:1607.03230

    Google Scholar 

  • Feynman R (1992) There’s plenty of room at the bottom. J Microelectromech Syst 1(1):60–66. https://doi.org/10.1109/84.128057

    Article  Google Scholar 

  • Feynman R (1993) Infinitesimal machinery. J Microelectromech Syst 2(1):4–14. https://doi.org/10.1109/84.232589

    Article  MathSciNet  Google Scholar 

  • Fomalont E, Reid M (2004) Microarcsecond astrometry using the SKA. New Astron Rev 48:1473

    Article  ADS  Google Scholar 

  • Ford E, Seager S, Turner E (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885

    Article  ADS  Google Scholar 

  • Funk B et al (2017) Exchange orbits – an interesting case of co-orbital motion. arxiv:1708.04205

    Google Scholar 

  • Gaidos E (2017) Transit detection of a “Starshade” at the inner lagrange point of an exoplanet. MNRAS 469:4455

    Article  ADS  Google Scholar 

  • Gandhi P et al (2016) Furiously fast and red: sub-second optical flaring in V404 Cyg during the 2015 outburst peak. MNRAS 459:554

    Article  ADS  Google Scholar 

  • Gaulme P, Mosser B, Schmider F-X, Guillot T, Jackiewicz J (2014) Seismology of giant planets. 2014arXiv1411.1740G

    Google Scholar 

  • Girma E, Guillochon J (2017) Modeling the spatial distribution of fragments formed from tidally disrupted stars. AAS meeting #229, id.154.13

    Google Scholar 

  • Gizis J et al (2016) WISEP J060738.65+242953.4: a nearby. Pole-on L8 brown dwarf with radio emission. Astron J. arXiv:1607.00943

    Google Scholar 

  • Gomez de Castro A et al (2017) On the feasibility of studying the exospheres of Earth-like exoplanets by Lyman-alpha monitoring. Detectability constraints for nearby M stars. Exp Astron. Submitted. https://arxiv.org/abs/1704.07443

  • Güdel M (2017) Exoplanetary habitability: radiation, particles, plasmas, and magnetic fields. In: AASTCS5 radio exploration of planetary habitability. Proceedings of the conference 7–12 May 2017, Palm Springs. Published in Bulletin of the American Astronomical Society, vol 49, no 3, id.100.01

    Google Scholar 

  • Guedes J, Rivera J, Davis E et al (2008) Formation and detectability of terrestrial planets around alpha Centauri B. ApJ 679:1582

    Article  ADS  Google Scholar 

  • Guerin W et al (2017) Temporal intensity interferometry: photon bunching on three bright stars. MNRAS. Accepted. arxiv:1708.06119

    Google Scholar 

  • Guggenberger E et al (2016) Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation. MNRAS. arXiv:1606.01917

    Google Scholar 

  • Hamers A, Portegies Zwart S (2016) White dwarf pollution by planets in stellar binaries. MNRAS. arXiv:1607.01397

    Google Scholar 

  • Han C, Udalski A, Gould A et al (2016) OGLE-2015-BLG-0479LA,B: binary gravitational microlens characterized by simultaneous ground-based and space-based observation. ApJ 828:53

    Article  ADS  Google Scholar 

  • Heidmann J, Klein M (1991) Bioastronomy: the search for extraterrestrial life. Springer, Berlin

    Book  Google Scholar 

  • Heidmann J, Maccone C (1994) Astrosail and SETIsail: two extrasolar system missions to the Sun’s gravitational focuses. Acta Astronaut 32:409

    Article  ADS  Google Scholar 

  • Heller R (2017) Relativistic generalization of the incentive trap of interstellar travel with application to breakthrough starshot. MNRAS. https://doi.org/10.1093/mnras/stx1493

  • Hippke M (2017) Interstellar communication I. Maximized data rate for lightweight space-probes. Arxiv: 1706.03795

    Google Scholar 

  • Hippke M, Angerhausen D (2015) A statistical search for a population of exo-trojans in the Kepler data set. ApJ 811:1

    Article  ADS  Google Scholar 

  • Hoyle (1957) The Black Cloud (New edition: Penguin Classics 2010)

    Google Scholar 

  • Imara N, Di Stefano R (2017) Searching for exoplanets around X-ray binaries with accreting white dwarfs, neutron stars, and black holes. ApJ. Submitted. https://arxiv.org/abs/1703.05762

  • Jang-Condell H (2008) Planet shadows in protoplanetary disks. I. Temperature perturbations. ApJ 679:797

    Article  ADS  Google Scholar 

  • Jang-Condell H (2009) Planet shadows in protoplanetary disks. II observable signatures. ApJ 700:820

    Article  ADS  Google Scholar 

  • Joachimi K et al (2016) On the detectability of CO molecules in the interstellar medium via X-ray spectroscopy. MNRAS. arXiv:1606.02285

    Google Scholar 

  • Jura M (2005) The age-dependence of the detectability of comets orbiting solar-type stars. ApJ 620:487

    Article  ADS  Google Scholar 

  • Kalas P et al (2008) Optical images of an exosolar planet 25 light-years from Earth. Science 322:1345

    Article  ADS  Google Scholar 

  • Katarzynski K et al (2016) Search for exoplanets and brown dwarfs with VLBI. MNRAS 461:929

    Article  ADS  Google Scholar 

  • Kendrick R et al (2013) Flat panel space based space surveillance sensor. In: Proceedings of the advanced Maui optical and space surveillance technologies conference, held in Wailea, Maui, 10–13 Sept 2013, Ed.: S. Ryan, id.E45

    Google Scholar 

  • Kennedy G, Wyatt M (2011) Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets. MNRAS 414:2137

    Google Scholar 

  • Kepler J (1610) Dissertatio cum nuncio siderio p 39. Cited in the Moon and the western imagination by Scott Montegomery (University of Arizona Press 2001) p 121. Kepler’s conversation with Galileo’s sidereal messenger. Translated by E. Rosen. New York, 1965. Translation of Dissertatio cum Nuncio Siderio (1610)

    Google Scholar 

  • Kiefer F et al (2017) Detection of a repeated transit signature in the light curve of the enigma star KIC 8462852: a 928-day period? Astron Astrophys. Submitted. arxiv:1709.01732

    Google Scholar 

  • Kierkegaard S (1844) Philosophical fragments

    Google Scholar 

  • Kite E et al (2016) Atmosphere-interior exchange on hot rocky exoplanets. ApJ. arXiv:1606.06740

    Google Scholar 

  • Kluska J, Benisty M, Soulez F et al (2016) Astron Astrophys. Arxiv: 1605.05262

    Google Scholar 

  • Kostov V et al (2014) Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. ApJ 784:14

    Article  ADS  Google Scholar 

  • Kotera K, Mottez F, Voisin G, Heyvaerts J (2016) Astron Astrophys. ArXiv:1605.05746

  • Kral Q, Schneider J, Kennery G, Souami D (2016) Effects of disc asymmetries on astrometric measurements– can they mimic planets? Astron Astrophys 592:A39

    Article  ADS  Google Scholar 

  • Krissansen-Totton J et al (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39. https://astrobiology.nasa.gov/news/could-earths-light-blue-color-be-a-signature-of-life/

    Article  ADS  Google Scholar 

  • Kuhn J et al (2014) Looking beyond 30m-class. Telescopes: the colossus project. SPIE Astronomical Telescopes and Instrumentation, 9145, id 91451G

    Google Scholar 

  • Labeyrie A (1995) Private communication

    Google Scholar 

  • Labeyrie A (1996) Resolved imaging of extra-solar planets with future 10–100km optical interferometric arrays. Astron Astrophys Suppl 118:517

    Article  ADS  Google Scholar 

  • Labeyrie (1999) Snapshots of alien worlds – the future of interferometry. Science 285:1864

    Google Scholar 

  • Labeyrie A (2016) Hypertelescopes: potential science gains, current testing and prospects in space. EAS Publ Ser 78–79:45

    Article  Google Scholar 

  • Labeyrie A (2017) Hypertelescope. In: Astronomy and science from the Moon workshop, June 22. Institut d’astrophysique de Paris

    Google Scholar 

  • Lagrange A-M et al (2008) A probable giant planet imaged in the beta Pictoris disk. VLT/NACO deep L-band imaging. Astron Astrophys 493:L21

    Article  ADS  Google Scholar 

  • Landis G (2016) Mission to the gravitational focus of the Sun: a critical analysis. arXiv:1604.06351

    Google Scholar 

  • Lecacheux A (1991) On the feasibility of extra-solar planetary detection at very low radio frequencies. In: Heidmann J, Klein MJ (ed) Bioastronomy the search forextraterrestial life – the exploration broadens. Lecture notes in physics, vol 390. Proceedings of the third international symposium on bioastronomy held at Val Cenis, Savoie, 18–23 June 1990, p 21

    Google Scholar 

  • Lecavelier des Etangs et al (1995) Pictoris: evidence of light variations

    Google Scholar 

  • Léger A et al (1996) Could we search for primitive life on extrasolar planets in the near future? Icarus 123:249

    Article  ADS  Google Scholar 

  • Leleu A et al (2017) Detection of co-orbital planets by combining transit and radial-velocity measurements. Astron Astrophys 599:L7

    Article  ADS  Google Scholar 

  • Lisse C et al (2015) IRTF/SPEX observations of the unusual Kepler lightcurve system KIC8462852. ApJ Lett 815:L17

    Article  ADS  Google Scholar 

  • Lisse C et al (2016) The puzzling detection of x-rays from Pluto by Chandra. Icarus. https://doi.org/10.1016/j.icarus.2016.07.008

  • Liu C et al (2016) Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 252:1210

    Article  ADS  Google Scholar 

  • Loeb A (2014) The habitable epoch of the early universe. Int J Astrobiol 13:337

    Article  Google Scholar 

  • Loeb A (2017) Natural and artificial spectral edges in exoplanets. MNRAS (in press). https://arxiv.org/abs/1702.05500

  • Lovelock J (1975) Thermodynamics and the recognition of alien biospheres. Proceedings of the Royal Society of London. Series B, Biological Sciences 189:167

    Google Scholar 

  • Luger R et al (2016) The pale green dot: a method to characterize Proxima Centauri b using exo-aurorae. ApJ. Accepted. https://arxiv.org/abs/1609.09075

  • Maccone C (2009) Deep space flight and communications: exploiting the Sun as a gravitational lens. Springer, Berlin. ISBN: 978-3-540-72942-6

    Book  Google Scholar 

  • Macintosh B, Robinson T (2016) Exoplanet detection and characterization with the WFIRST space coronagraph. In: American Geophysical Union, Fall General Assembly 2016. Abstract #P13C-04

    Google Scholar 

  • Martin DV (2017) Circumbinary planets – II. When transits come and go. MNRAS 465:3235

    Article  ADS  Google Scholar 

  • Mashian N, Loeb A (2016) CEMP stars: possible hosts to carbon planets in the early universe. MNRAS. arXiv:1603.06943

    Google Scholar 

  • McGuire B, Brandon Carroll P, Loomis RA, Finneran IA, Jewell PR et al (2016) Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352:1449–1452

    Article  ADS  Google Scholar 

  • McKinnon M et al (2016) A preliminary operations concept for the ngVLA. In: Proceedings of the SPIE, vol 9910, id. 99100L

    Google Scholar 

  • Meadows V (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology. https://doi.org/10.1089/ast.2016.1578. http://www.planetformationimager.org/

  • Mura A, Wurz P, Schneider J et al (2011) Comet-like tail-formation of exospheres of hot rocky exoplanets: possible implications for Corot-7b. Icarus 211:1

    Article  ADS  Google Scholar 

  • Nauenberg M (2002) Stability and eccentricity of periodic orbit for two planets in a 1:1 resonance. Astron J 124:2332

    Article  ADS  Google Scholar 

  • Nielsen J et al (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353:702

    Article  ADS  Google Scholar 

  • Norris R (2016) Discovering the unexpected in astronomical survey data. Publ Astron Soc Aust. https://doi.org/10.1017/pasa.2016.63

  • Oklopcic A et al (2016) ApJ. Accepted. ArXiv:1605.07185

    Google Scholar 

  • Orgogozo V (2016) Imagine living in a parallel world. J CNRS. https://news.cnrs.fr/opinions/imagine-living-in-a-parallel-world

  • Owen T (1980) The search for early forms of life in other planetary systems: future possibilities afforded by spectroscopic techniques. In: Papagiannis MD (ed) Strategies for the search for life in the universe. Reidel, Dordrecht, p 177

    Chapter  Google Scholar 

  • Owen J, Kollmeier J (2016) Dust traps as planetary birthsites: basics and vortex formation. MNRAS. arXiv:1607.08250

    Google Scholar 

  • Paine M (2006) Can we detect asteroid impacts with rocky extrasolar planets? http://www.thespacereview.com/article/761/1

  • Pascale E et al (2017) The EXoplanet Infrared Climate TElescope (EXCITE) in European Planetary Science Congress 2017, vol 11, EPSC2017-729-1

    Google Scholar 

  • Patruno A, Kama M (2017) Neutron star planets: atmospheric processes and habitability. Astron Astrophys. Submitted. https://arxiv.org/abs/1705.07688

  • Payne M, Veras D, Gaensicke B, Holman M (2017) The fate of exomoons in white dwarf planetary systems. MNRAS. Accepted. https://arxiv.org/abs/1610.01597

  • Pisano G, Maffei B, Ade P et al (2016) Multi-octave metamaterial reflective half-wave plate for millimetre and sub-millimetre wave applications applied optics. Submitted. https://arxiv.org/abs/1610.00582

  • Prangé R, Pallier L, Hansen K et al (2004) An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432:78

    Article  ADS  Google Scholar 

  • Qiu Y et al (2016) Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2(6):e1501764. https://doi.org/10.1126/sciadv.1501764

    Article  ADS  Google Scholar 

  • Quintana E et al (2016) The frequency of giant impacts on Earth-like worlds. ApJ 821:126. http://www.manyworlds.space/index.php/2016/05/23/big-bangs/

    Article  ADS  Google Scholar 

  • Rajpaul V et al (2016) Ghost in the time series: no planet for Alpha Cen B. MNRAS 456:L6

    Article  ADS  Google Scholar 

  • Rappaport S et al (2012) Possible disintegrating short-period super-mercury orbiting KIC 12557548. ApJ 752:1

    Article  ADS  Google Scholar 

  • Riaud P, Schneider J (2007) Improving Earth-like planets detection with an ELT: the differential radial velocity experiment. Astron Astrophys 469:355

    Article  ADS  Google Scholar 

  • Roseman N et al (2016) A highly efficient directional molecular white-light emitter driven by a continuous-wave laser diode. Science 352:1301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Russell M, Saunders M, Luhman J (1985) Mass-loading and the formation of the Venus tail. Adv Space Res 5:1

    Article  ADS  Google Scholar 

  • Sacco G et al (2017) A 1574-day periodicity of transits orbiting KIC 8462852. ApJ. Submitted. arxiv:1710.01081

    Google Scholar 

  • Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Letters 100:018101

    Article  ADS  Google Scholar 

  • Sartoretti P, Schneider J (1999) On the detection of satellites of extrasolar planets with the method of transits. Astron Astrophys Suppl 134:553

    Article  ADS  Google Scholar 

  • Scheffer L (2015) Graphene sails with phased array optical drive – towards more practical interstellar probes. https://arxiv.org/abs/1506.09214

  • Schneider J (1994) On the occultations of a binary star by a circum-orbiting dark companion. Planet Space Sci 42:539

    Article  ADS  Google Scholar 

  • Schneider J (2010) Reply to a comment on “The far future of exoplanet direct characterization” – the case for interstellar space probes. Astrobiology 10:857

    Article  ADS  Google Scholar 

  • Schneider J et al (2011) Defining and cataloging exoplanets: the exoplanet.eu database. Astron Astrophys 532:A79

    Google Scholar 

  • Schneider J (2013) Philosophical issues in the search for extraterrestrial life and intelligence. Int J Astrobiol 12:259

    Article  Google Scholar 

  • Schneider (2017) Measuring the mass and radius of Planet 9 PASP 129:104401

    Google Scholar 

  • Schneider J, Cabrera J (2006) Can stellar wobble in triple systems mimic a planet? Astron Astrophys 445:1159

    Article  ADS  Google Scholar 

  • Schneider J, Coudé du Foresto V, Ollivier M (2009) Search for life on exoplanets: toward an international institutional coordination. In: Exoplanets and disks: their formation and diversity. In: Proceedings of the international conference. AIP conference proceedings, vol 1158, p 369

    Google Scholar 

  • Schneider J et al (2010) The far future of exoplanet direct characterization. Astrobiology 10:121

    Article  ADS  Google Scholar 

  • Schneider J, Lainey V, Cabrera J (2015) A next step in exoplanetology: exo-moons. Int J Astrobiol 14:191

    Article  Google Scholar 

  • Shashkova I et al (2017) Stellar imaging coronagraph an additional instrument for exoplanet exploration onboard the WSO-UV 1.7 meter orbital telescope. In: European planetary science congress 2017, vol 11, EPSC2017-536-1

    Google Scholar 

  • Shkolnik E, Walker G, Bohlender D (2003) Evidence for planet-induced chromospheric activity on HD 179949. ApJ 597:1092

    Article  ADS  Google Scholar 

  • Simpson F (2016) An anthropic prediction for the prevalence of waterworlds. MNRAS 468:2803

    Article  ADS  Google Scholar 

  • Sirbu D, Thomas S, Belikov R (2017) Techniques for high-contrast imaging in multi-star systems II: multi-star wavefront control. ApJ. Submitted. arxiv:1704.05441

    Google Scholar 

  • Snellen I, Brandl B, de Kok R et al (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63

    Article  ADS  Google Scholar 

  • Stamenkovic V, Seager S (2016) Emerging possibilities and insuperable limitations of exogeophysics: the example of plate tectonics. ApJ 825:78

    Article  ADS  Google Scholar 

  • Stark C et al (2015) Lower limits on aperture size for an exoearth detecting coronagraphic mission. ApJ 808:149

    Article  ADS  Google Scholar 

  • Suosaari E et al (2016) New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci Rep 6:20557

    Article  ADS  Google Scholar 

  • Szulagyi J, Masset F, Lega E et al (2016) Circumplanetary disk or circumplanetary envelope? MNRAS. Arviv: 1605.04586

    Google Scholar 

  • Teachey A, Kipping DM, Schmitt AR (2017). HEK VI: on the dearth of Galilean analogs in Kepler and the exomoon candidate Kepler-1625b I. arXiv:1707.08563

    Google Scholar 

  • Thomas B, Engler E, Kachelriess M et al (2016) Terrestrial effects of nearby supernovae in the early pleistocene. ApJ Lett 826:L3

    Article  ADS  Google Scholar 

  • Tinetti G et al (2016) The science of ARIEL. In: Proceedings of SPIE 9904, space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, 99041X

    Google Scholar 

  • Tritschler U, Cölfen H (2016) Self-assembled hierarchically structured organic–inorganic composite systems. Bioinspir Biomim 11:035002. https://doi.org/10.1088/1748-3190/11/3/035002

    Article  ADS  Google Scholar 

  • Tsytovich V et al (2007) From plasma crystals and helical structures towards inorganic living matter. New J Phys 9:263. http://iopscience.iop.org/article/10.1088/1367-2630/9/8/263/pdf

    Article  Google Scholar 

  • Vincke K, Pfalzner S (2016) Cluster dynamics largely shapes protoplanetary disc sizes. MNRAS. arXiv:1606.07431

    Google Scholar 

  • Visser P, van de Buit F (2015) Fourier spectra from exoplanets with polar caps and ocean glint. Astron Astrophys 579:A21

    Article  Google Scholar 

  • Vitasse O et al (2017) Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J Geophys Res 122:7865

    Article  Google Scholar 

  • Wang H, Lineweaver C (2016) Proceedings of the 15th Australian space research conference. arxiv:1605.05003

    Google Scholar 

  • Wolczek O (1982) New conceptions of unmanned planetary exploration – extra-solar planetary systems. Acta Astronaut 9:529

    Article  ADS  Google Scholar 

  • Wong W et al (2016) Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2(6):e1600417

    Article  ADS  Google Scholar 

  • Yates J, Palmer P, Biller B, Cockell CH (2017) Atmospheric habitable zones in Y dwarf atmospheres. ApJ 836:184

    Article  ADS  Google Scholar 

  • Zapatero-Osorio M-T et al (2016) Near-infrared photometry of WISE J085510.74-071442.5. Astron Astrophys 592:A80

    Article  Google Scholar 

  • Zarka PH, Treumann R, Ryabov B, Ryabov V (2001) Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys Space Sci 277:293

    Article  ADS  Google Scholar 

  • Zhu W et al (2016) Mass measurements of isolated objects from space-based microlensing. ApJ 825:60

    Article  ADS  Google Scholar 

  • Zhu W et al (2017) An isolated microlens observed from K2, Spitzer and Earth. ApJ Lett. Submitted. arxiv:1709.09959

    Google Scholar 

  • Zurbuchen TH (2017) NASA internal memo: next steps for WFIRST Program. Available at http://www.spaceref.com/news/viewsr.html?pid=50694

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Schneider .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schneider, J. (2018). Future Exoplanet Research: Science Questions and How to Address Them. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Future Exoplanet Research: Science Questions and How to Address Them
    Published:
    18 January 2018

    DOI: https://doi.org/10.1007/978-3-319-30648-3_163-2

  2. Original

    Future Exoplanet Research: Science Questions and How to Address Them
    Published:
    15 November 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_163-1