Skip to main content

Anisotropic and Isotropic Chemical Shifts Perturbations from Solid State NMR Spectroscopy for Structural and Functional Biology

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance
  • 168 Accesses

Abstract

A molecular structure determined by crystallography, cryo-EM, or NMR is an excellent starting point for our understanding of how biology is accomplished, but NMR is one of the best tools for going beyond this starting point for a detailed characterization of functional mechanisms, even for an understanding of kinetic rates. To this end one of the best approaches for doing this is through the observation of isotropic and anisotropic chemical shift perturbations. Two molecular systems that have been extensively studied and characterized exemplify the usefulness of chemical shift perturbation as an effective strategy for understanding functional activities. Gramicidin A, an antibiotic from Bacillus brevis, that as a dimer forms a monovalent cation channel and a protein from Influenza A virus, the M2 protein that as a tetramer forms a proton channel. Blocking the M2 proton channel is an effective anti-influenza strategy. For gramicidin it was discovered that different monovalent cations have different binding sites at the mouth and exit of the channel accounting for the different solvation energy requirements of the various cations. For M2 the functional activity of a unique histidine tetrad that shuttles protons into the viral interior through a balance of futile and conductance protonation cycles was elucidated by chemical shift perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(96):223–30.

    Article  Google Scholar 

  2. Anderson LC, DeHart CJ, Kaiser NK, Fellers RT, Smith DF, Greer JB, et al. Identification and characterization of human proteoforms by top-down LC-21 tesla FT-ICR mass spectrometry. J Proteome Res. 2016;16:1087–1096.

    Google Scholar 

  3. Zhou HX, Cross TA. Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys. 2013;42:361–92.

    Article  Google Scholar 

  4. Cross TA, Ekanayake V, Paulino J, Wright A. Solid state NMR: The essential technology for helical membrane protein structural characterization. J Magn Reson. 2014;239:100–9.

    Article  Google Scholar 

  5. Ketchem RR, Hu W, Cross TA. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993;261(5127):1457–60.

    Article  Google Scholar 

  6. Ketchem RR, Roux B, Cross TA. High-resolution polypeptide structure in a lamellar phase lipid environment from solid-state NMR derived orientational constraints. Structure. 1997;5:1655–69.

    Article  Google Scholar 

  7. Hu W, Lazo ND, Cross TA. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel. Biochemistry. 1995;34(43):14138–46.

    Article  Google Scholar 

  8. Cross TA, Arseniev A, Cornell BA, Davis JH, Killian JA, Koeppe RE, et al. Gramicidin channel controversy – revisited. Nat Struct Biol. 1999;6(7):610–2.

    Article  Google Scholar 

  9. Andersen OS, Apell H-J, Bamberg E, Busath DD, Koeppe REI, Sigworth FJ, et al. Gramicidin channel controversy – the structure in a lipid environment. Nat Struct Biol. 1999;6:609.

    Article  Google Scholar 

  10. Arseniev AS, Barsukov IL, Bystrov VF, Lomize AL, Ovchinnikov YA. 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985;186(2):168–74.

    Article  Google Scholar 

  11. Burkhart BM, Li N, Langs DA, Pangborn WA, Duax WL. The conducting form of gramicidin A is a right-handed double-stranded double helix. Proc Natl Acad Sci U S A. 1998;95(22):12950–5.

    Article  Google Scholar 

  12. Hofer N, Aragao D, Caffrey M. Crystallizing transmembrane peptides in lipidic mesophases. Biophys J. 2010;99(3):L23–5.

    Article  Google Scholar 

  13. Miao Y, Fu R, Zhou HX, Cross TA. Dynamic short hydrogen bonds in histidine tetrad of full-length M2 proton channel reveal tetrameric structural heterogeneity and functional mechanism. Structure. 2015;23(12):2300–8.

    Article  Google Scholar 

  14. Wang J, Kim S, Kovacs F, Cross TA. Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 2001;10(11):2241–50.

    Article  Google Scholar 

  15. Nishimura K, Kim S, Zhang L, Cross TA. The closed state of a H+ channel helical bundle: combining precise orientational and distance restraints from solid state NMR. Biochemistry. 2002;41:13170–7.

    Article  Google Scholar 

  16. Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature. 2008;451:596–9.

    Article  Google Scholar 

  17. Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A. 2010;107(34):15075–80.

    Article  Google Scholar 

  18. Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, et al. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science. 2010;330(6003):509–12.

    Article  Google Scholar 

  19. Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451:591–5.

    Article  Google Scholar 

  20. Ketchem RR, Lee KC, Huo S, Cross TA. Macromolecular structural elucidation with solid-state NMR-derived orientational constraints. J Biomol NMR. 1996;8(1):1–14.

    Article  Google Scholar 

  21. Lazo ND, Hu W, Lee KC, Cross TA. Rapidly-frozen polypeptide samples for characterization of high definition dynamics by solid-state NMR spectroscopy. Biochem Biophys Res Commun. 1993;197(2):904–9.

    Article  Google Scholar 

  22. North CL, Cross TA. Correlations between function and dynamics: time scale coincidence for ion translocation and molecular dynamics in the gramicidin channel backbone. Biochemistry. 1995;34(17):5883–95.

    Article  Google Scholar 

  23. Lee KC, Huo S, Cross TA. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995;34(3):857–67.

    Article  Google Scholar 

  24. Kim S, Quine JR, Cross TA. Complete cross-validation and R-factor calculation of a solid-state NMR derived structure. J Am Chem Soc. 2001;123(30):7292–8.

    Article  Google Scholar 

  25. Fu R, Cotten M, Cross TA. Inter- and intramolecular distance measurements by solid-state MAS NMR: determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers. J Biomol NMR. 2000;16(3):261–8.

    Article  Google Scholar 

  26. Tian F, Cross TA. Cation transport: an example of structural based selectivity. J Mol Biol. 1999;285(5):1993–2003.

    Article  Google Scholar 

  27. Tian F, Cross TA. Cation binding induced changes in 15N CSA in a membrane-bound polypeptide. J Magn Reson. 1998;135(2):535–40.

    Article  Google Scholar 

  28. Hinton JF, Whaley WL, Shungu D, Koeppe 2nd RE, Millett FS. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy. Biophys J. 1986;50(3):539–44.

    Article  Google Scholar 

  29. Dzidic JaK P. Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n. J Phys Chem. 1970;74:1466–74.

    Article  Google Scholar 

  30. Hu J, Chekmenev EY, Gan Z, Gor’kov PL, Saha S, Brey WW, et al. Ion solvation by channel carbonyls characterized by 17O solid-state NMR at 21T. J Am Chem Soc. 2005;127(34):11922–3.

    Article  Google Scholar 

  31. Fu R, Brey WW, Shetty K, Gor’kov P, Saha S, Long JR, et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson. 2005;177(1):1–8.

    Article  Google Scholar 

  32. Chekmenev EY, Waddell KW, Hu J, Gan Z, Wittebort RJ, Cross TA. Ion-binding study by 17O solid-state NMR spectroscopy in the model peptide Gly-Gly-Gly at 19.6T. J Am Chem Soc. 2006;128(30):9849–55.

    Article  Google Scholar 

  33. Chekmenev EY, Gor’kov PL, Cross TA, Alaouie AM, Smirnov AI. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy. Biophys J. 2006;91(8):3076–84.

    Article  Google Scholar 

  34. Jones TL, Fu R, Nielson F, Cross TA, Busath DD. Gramicidin channels are internally gated. Biophys J. 2010;98(8):1486–93.

    Article  Google Scholar 

  35. Li C, Qin H, Gao FP, Cross TA. Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel. Biochim Biophys Acta. 2007;1768(12):3162–70.

    Article  Google Scholar 

  36. Miao Y, Qin H, Fu R, Sharma M, Can TV, Hung I, et al. M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew Chem Int Ed Eng. 2012;51:8383–6.

    Article  Google Scholar 

  37. Miao Y, Cross TA, Fu R. Identifying inter-residue resonances in crowded 2D C- C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. J Biomol NMR. 2013;56:265–73.

    Article  Google Scholar 

  38. Ekanayake EV, Fu R, Cross TA. Structural influences: cholesterol, drug, and proton binding to full-length influenza A M2 protein. Biophys J. 2016;110(6):1391–9.

    Article  Google Scholar 

  39. Wright AK, Batsomboon P, Dai J, Hung I, Zhou HX, Dudley GB, et al. Differential binding of rimantadine enantiomers to influenza A M2 proton channel. J Am Chem Soc. 2016;138(5):1506–9.

    Article  Google Scholar 

  40. Hu J, Fu R, Nishimura K, Zhang L, Zhou HX, Busath DD, et al. Histidines, heart of the hydrogen ion channel from influenza A virus: toward an understanding of conductance and proton selectivity. Proc Natl Acad Sci U S A. 2006;103(18):6865–70.

    Article  Google Scholar 

  41. Hong M, Fritzsching KJ, Williams JK. Hydrogen-bonding partner of the proton-conducting histidine in the influenza M2 proton channel revealed from 1H chemical shifts. J Am Chem Soc. 2012;134(36):14753–5.

    Article  Google Scholar 

  42. Fu R, Miao Y, Qin H, Cross TA. Probing hydronium ion histidine NH exchange rate constants in the M2 channel via indirect observation of dipolar-dephased 15N signals in magic-angle-spinning NMR. J Am Chem Soc. 2016;138(49):15801–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard A. Chekmenev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chekmenev, E.A., Paulino, J., Fu, R., Cross, T.A. (2017). Anisotropic and Isotropic Chemical Shifts Perturbations from Solid State NMR Spectroscopy for Structural and Functional Biology. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics