Skip to main content
Log in

Identifying inter-residue resonances in crowded 2D 13C–13C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional 13C–13C chemical shift correlation spectra is presented. With the analyses of 13C–13C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly 13C labeled protein that are consistent with the high resolution structure of the M2 (22–62) protein (Sharma et al., Science 330(6003):509–512, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, Samish I, Lamb RA, Pinto LH, DeGrado WF, Klein ML (2010) Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci USA 107(34):15075–15080

    Article  ADS  Google Scholar 

  • Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG (2010) Magic angle spinning NMR investigation of influenza A M2(18–60): support for an allosteric mechanism of inhibition. J Am Chem Soc 132(32):10958–10960

    Article  Google Scholar 

  • Andreas LB, Eddy MT, Chou JJ, Griffin RG (2012) Magic-angle-spinning NMR of the drug resistant S31 N M2 proton transporter from influenza A. J Am Chem Soc 134(17):7215–7218

    Article  Google Scholar 

  • Basu SC, Basu M (2002) Liposome methods and protocols. Methods Mol Biol 199:3–16

    Google Scholar 

  • Bloembergen N, Shapiro S, Pershan PS, Artman JO (1959) Cross-relaxation in spin systems. Phys Rev 114(2):445–459

    Article  ADS  Google Scholar 

  • Bodenhausen G, Vold RL, Vold RR (1980) Multiple quantum spin-echo spectroscopy. J Magn Reson 37(1):93–106

    Google Scholar 

  • Cady SD, Mishanina TV, Hong M (2009) Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J Mol Biol 385(4):1127–1141

    Article  Google Scholar 

  • Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–692

    Article  ADS  Google Scholar 

  • Can TV, Sharma M, Hung I, Gor’kov PL, Brey WW, Cross TA (2012) Magic angle spinning and oriented sample solid-state NMR structural restraints combine for influenza A M2 protein functional insights. J Am Chem Soc 134(22):9022–9025

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102

    Article  ADS  Google Scholar 

  • Cross TA, Sharma M, Yi M, Zhou H-X (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36(2):117–125

    Article  Google Scholar 

  • Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly C-13, N-15 labelled peptides: quantification and application to antamanide. J Biomol NMR 20(3):203–221

    Article  Google Scholar 

  • Du J, Cross TA, Zhou H-X (2012) Recent progress in structure-based anti-influenza drug design. Drug Discov Today 17(19–20):1111–1120

    Article  Google Scholar 

  • Duerr UHN, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112(11):6054–6074

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1989) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101

    Article  ADS  Google Scholar 

  • Gopinath T, Verardi R, Traaseth NJ, Veglia G (2010) Sensitivity enhancement of separated local field experiments: application to membrane proteins. J Phys Chem B 114(15):5089–5095

    Article  Google Scholar 

  • Gor’kov PL, Chekmenev EY, Li C, Cotten M, Buffy JJ, Traaseth NJ, Veglia G, Brey WW (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185(1):77–93

    Article  ADS  Google Scholar 

  • Grambas S, Bennett MS, Hay AJ (1992) Influence of amantadine resistance mutations on the pH regulatory function of the M2-protein of influenza-A viruses. Virology 191(2):541–549

    Article  Google Scholar 

  • Habenstein B, Loquet A, Giller K, Becker S, Lange A (2013) Structural characterization of supramolecular assemblies by 13C spin dilution and 2D solid-state NMR. J Biomol NMR 55:1–9

    Article  Google Scholar 

  • Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively C-13-labelled proteins. J Biomol NMR 44(4):245–260

    Article  Google Scholar 

  • Hu J, Asbury T, Achuthan S, Li C, Bertram R, Quine JR, Fu R, Cross TA (2007) Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys J 92(12):4335–4343

    Article  Google Scholar 

  • Khitrin AK, Xu JD, Ramamoorthy A (2011) Cross-correlations between low-gamma nuclei in solids via a common dipolar bath. J Magn Reson 212(1):95–101

    Article  ADS  Google Scholar 

  • Lamb RA, Zebedee SL, Richardson CD (1985) Influenza virus-M2 protein is an integral membrane-protein expressed on the infected-cell surface. Cell 40(3):627–633

    Article  Google Scholar 

  • Ma C, Polishchuk AL, Ohigashi Y, Stouffer AL, Schoen A, Magavern E, Jing X, Lear JD, Freire E, Lamb RA, DeGrado WF, Pinto LH (2009) Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proc Natl Acad Sci USA 106(30):12283–12288

    Article  ADS  Google Scholar 

  • McNeill SA, Gor’kov PL, Shetty K, Brey WW, Long JR (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144

    Article  ADS  Google Scholar 

  • Miao Y, Qin H, Fu R, Sharma M, Can TV, Hung I, Luca S, Gor’kov PL, Brey WW, Cross TA (2012) M2 proton channel structural validation from full-length protein samples in snthetic bilayers and E. coli membranes. Angew Chem 51(33):8383–8386

    Article  Google Scholar 

  • Nguyen PA, Soto CS, Polishchuk A, Caputo GA, Tatko CD, Ma C, Ohigashi Y, Pinto LH, DeGrado WF, Howard KP (2008) pH-induced conformational change of the influenza M2 protein C-terminal domain. Biochemistry 47(38):9934–9936

    Article  Google Scholar 

  • Nishimura K, Kim SG, Zhang L, Cross TA (2002) The closed state of a H + channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41(44):13170–13177

    Article  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain C-13 and N-15 signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. ChemBioChem 2(4):272–281

    Article  Google Scholar 

  • Peersen OB, Wu XL, Smith SO (1994) Enhancement of CP-MAS signals by variable-amplitude cross-polarization—compensation for inhomogeneous B-1 fields. J Magn Reson A 106(1):127–131

    Article  Google Scholar 

  • Pielak RM, Chou JJ (2010) Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel. Biochem Biophys Res Commun 401(1):58–63

    Article  Google Scholar 

  • Pielak RM, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 106(18):7379–7384

    Article  ADS  Google Scholar 

  • Pielak RM, Oxenoid K, Chou JJ (2011) Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure 19(11):1655–1663

    Article  Google Scholar 

  • Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142(6):902–913

    Article  Google Scholar 

  • Saito H, Ando I, Ramamoorthy A (2010) Chemical shift tensor—the heart of NMR: insights into biological aspects of proteins. Prog NMR Spectrosc 57(2):181–228

    Article  Google Scholar 

  • Sakaguchi T, Tu QA, Pinto LH, Lamb RA (1997) The active oligomeric state of the minimalistic influenza virus M-2 ion channel is a tetramer. Proc Natl Acad Sci USA 94(10):5000–5005

    Article  ADS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1, 2, and 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595

    Article  ADS  Google Scholar 

  • Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou H-X, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330(6003):509–512

    Article  ADS  Google Scholar 

  • Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451(7178):596–599

    Article  ADS  Google Scholar 

  • Sugrue RJ, Hay AJ (1991) Structural characteristics of the M2 protein of influenza-A viruses—evidence that it forms a tetrameric channel. Virology 180(2):617–624

    Article  Google Scholar 

  • Suter D, Ernst RR (1985) Spin diffusion in resolved solid-state NMR-spectra. Phys Rev B 32(9):5608–5627

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637

    Article  ADS  Google Scholar 

  • Tian CL, Gao PF, Pinto LH, Lamb RA, Cross TA (2003) Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers. Prot Sci 12(11):2597–2605

    Article  Google Scholar 

  • Traaseth NJ, Veglia G (2011) Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson 211(1):18–24

    Article  ADS  Google Scholar 

  • Vanderhart DL, Garroway AN (1979) C-13 NMR rotating frame relaxation in a solid with strongly coupled protons—polyethylene. J Chem Phys 71(7):2773–2787

    Article  ADS  Google Scholar 

  • Wang JF, Kim S, Kovacs F, Cross TA (2001) Structure of the transmembrane region of the M2 protein H + channel. Prot Sci 10(11):2241–2250

    Article  Google Scholar 

  • Wang J, Wu Y, Ma C, Fiorin G, Wang J, Pinto LH, Lamb RA, Klein ML, Degrado WF (2013) Structure and inhibition of the drug-resistant S31 N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci USA 110(4):1315–1320

    Article  ADS  Google Scholar 

  • Wei YF, Ramamoorthy A (2001) 2D 15 N–15 N isotropic chemical shift correlation established by 1H–1H dipolar coherence transfer in biological solids. Chem Phys Lett 342(3–4):312–316

    Article  ADS  Google Scholar 

  • Weiner MP, Anderson C, Jerpseth B, Wells S, Johnson-Browne B, Vaillancourt P (1994) Studier pET system vectors and hosts. Strateg Mol Biol 7(2):41–43

    Google Scholar 

  • Weingarth M, Demco DE, Bodenhausen G, Tekely P (2009) Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem Phys Lett 469(4–6):342–348

    Article  ADS  Google Scholar 

  • Wylie BJ, Franks WT, Rienstra CM (2006) Determinations of N-15 chemical shift anisotropy magnitudes in a uniformly N-15, C-13-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. J Phys Chem B 110(22):10926–10936

    Article  Google Scholar 

  • Xu J, Struppe J, Ramamoorthy A (2008) Two-dimensional homonuclear chemical shift correlation established by the cross-relaxation driven spin diffusion in solids. J Chem Phys 128(5):052308

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant AI-023007. All NMR experiments were carried out at the National High Magnetic Field Lab (NHMFL) supported by the NSF Cooperative agreement N. DMR-0654118 and the State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riqiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Cross, T.A. & Fu, R. Identifying inter-residue resonances in crowded 2D 13C–13C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. J Biomol NMR 56, 265–273 (2013). https://doi.org/10.1007/s10858-013-9745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9745-7

Keywords

Navigation