Skip to main content

Cryptophyta (Cryptomonads)

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

Cryptomonads are small (~5–50 μm) biflagellate protists found in diverse freshwater, brackish, and marine habitats. They are characterized by a distinct cellular asymmetry and the presence of extrusive organelles called ejectosomes. Many cryptomonads are photosynthetic; their plastids are diverse in pigmentation and coloration. Plastid-bearing cryptomonads are noteworthy in their possession of a “nucleomorph,” a residual nucleus of secondary endosymbiotic origin. Members of the cryptomonad genus Goniomonas lack plastids and ingest bacteria for nutrition. Mixotrophic cryptomonads may also exist, and loss of photosynthesis has given rise to colorless, heterotrophic, leucoplast-bearing species on multiple occasions. Cryptomonad taxonomy was traditionally based on morphology and now includes consideration of ultrastructural features such as the cell shape, the periplast structure, the type of cell invagination present (furrow-gullet system), the flagellar apparatus architecture, and the presence-absence of pyrenoids. However, molecular sequence data suggest that morphology is of limited taxonomic utility at the level of species identification. Cellular dimorphisms have been found within clonal cultures, supporting the notion that cryptomonads are capable of sexual reproduction. Approximately 20 genera and >100 species of cryptomonads have been described, although their true diversity and abundance in nature is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adir, N. (2005). Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant. Photosynthesis Research, 85(1), 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Alcocer, J., Lugo, A., del Rosario Sánchez, M., & Escobar, E. (1998). Isabela Crater-Lake: A Mexican insular saline lake. Hydrobiologia, 381(1–3), 1–7.

    Article  CAS  Google Scholar 

  • Ammermann, S., Schneider, T., Westermann, M., Hillebrand, H., & Rhiel, E. (2013). Ejectisins: Tough and tiny polypeptides are a major component of cryptophycean ejectisomes. Protoplasma, 250(2), 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, E. (1962). A cytological study of Chilomonas paramaecium with particular reference to the so-called trichocysts. Journal of Protozoology, 9(4), 380–395.

    Article  CAS  PubMed  Google Scholar 

  • Antia, N. J., Cheng, J. Y., & Taylor, F. J. R. (1969). The heterotrophic growth of a marine photosynthetic cryptomonad (Chroomonas salina). In R. Margalef (Ed.), Proceedings of the international seaweed symposium (pp. 17–29). Madrid: Subsecretaria De La Marina Mercante.

    Google Scholar 

  • Apt, K. E., Collier, J. L., & Grossmanm, A. R. (1995). Evolution of the phycobiliproteins. Journal of Molecular Biology, 248(1), 79–96.

    Article  CAS  PubMed  Google Scholar 

  • Archibald, J. M. (2012). The evolution of algae by secondary and tertiary endosymbiosis. In G. Piganeau (Ed.), Genomic insights into the biology of algae (pp. 87–118). London: Elsevier/Academic.

    Chapter  Google Scholar 

  • Baurain, D., Brinkmann, H., Petersen, J., Rodriguez-Ezpeleta, N., Stechmann, A., Demoulin, V., et al. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27(7), 1698–1709.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (Protista) from anoxic habitats. Ophelia, 52(2), 113–142.

    Article  Google Scholar 

  • Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.

    Article  Google Scholar 

  • Brett, S. J., & Wetherbee, R. (1986). A comparative study of periplast structure in Cryptomonas cryophila and C. ovata (Cryptophyceae). Protoplasma, 131(1), 23–31.

    Article  Google Scholar 

  • Broughton, M. J., Howe, C. J., & Hiller, R. G. (2006). Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene, 369(1), 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. R., Jeffrey, S. W., Vokman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331.

    Article  CAS  Google Scholar 

  • Brugerolle, G. (2002). Cryptophagus subtilis: A new parasite of cryptophytes affiliated with the Perkinsozoa lineage. European Journal of Protistology, 37(4), 379–390.

    Article  Google Scholar 

  • Brugerolle, G., & Mignot, J. P. (1979). Observations sur le cycle l’ultrastructure et la position systematique de Spiromonas perforans (Bodo perforans Hollande 1938), flagellé parasite de Chilomonas paramaecium: ses relations avec les dinoflagellés et sporozoaires. Protistologica, 15(2), 183–196.

    Google Scholar 

  • Burkholder, J. M., & Glasgow, H. B. (1997). Pfiesteria piscida and other Pfiesteria-like dinoflagellates: Behavior, impacts, and environmental controls. Limnology and Oceanography, 42(5), 1052–1075.

    Article  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K., & Pawlowski, J. (2008). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Letters, 4(4), 366–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki, F., Okamoto, N., Pombert, J. F., & Keeling, P. J. (2012). The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proceedings of the Royal Society of London Series B, 279(1736), 2246–2254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butcher, R. W. (1967). An introductory account of the smaller algae of British coastal waters. Part IV: Cryptophyceae (Fishery investigations. Series IV, 54 pp. + 20 plates). London: Ministry of Agriculture, Fisheries and Food.

    Google Scholar 

  • Camacho, A., Vicente, E., & Miracle, M. R. (2001). Ecology of Cryptomonas at the chemocline of a karstic sulphate-rich lake. Marine and Freshwater Research, 52(5), 805–815.

    Article  CAS  Google Scholar 

  • Cavalier-Smith, T. (1986). The kingdom Chromista: Origin and systematics. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 4, pp. 309–347). Bristol: Biopress.

    Google Scholar 

  • Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology, 46(4), 347–366.

    Article  CAS  PubMed  Google Scholar 

  • Clay, B. L., & Kugrens, P. (1999). Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green cryptomonads H. amylosa and Falcomonas daucoides. Protist, 150(3), 297–310.

    Article  CAS  PubMed  Google Scholar 

  • Clay, B. L., Kugrens, P., & Lee, R. E. (1999). A revised classification of the Cryptophyta. Botanical Journal of the Linnean Society, 131(2), 131–151.

    Article  Google Scholar 

  • Collini, E., Wong, C. Y., Wilk, K. E., Curmi, P. M. G., Brumer, P., & Scholes, G. D. (2010). Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 463(4), 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492(7427), 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Deane, J. A., Hill, D. R. A., Brett, S. J., & McFadden, G. I. (1998). Hanusia phi gen. et sp. nov. (Cryptophyceae): Characterization of ‘Cryptomonas sp. Φ’. European Journal of Phycology, 33(2), 149–154.

    Article  Google Scholar 

  • Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A., & McFadden, G. I. (2002). Cryptomonad evolution: Nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. Journal of Phycology, 38(6), 1236–1244.

    Article  CAS  Google Scholar 

  • Deschamps, P., Haferkamp, I., Dauvillée, D., Haebel, S., Steup, M., Buléon, A., et al. (2006). Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryotic Cell, 5(6), 954–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge, J. D. (1969). Ultrastructure of Chroomonas mesostigmatica Butcher (Cryptophyceae). Archiv für Mikrobiologie, 69(3), 266–280.

    Article  Google Scholar 

  • Douglas, S. E., & Penny, S. L. (1999). The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. Journal of Molecular Evolution, 48(2), 236–244.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L.-T., et al. (2001). The highly reduced genome of an enslaved algal nucleus. Nature, 410(6832), 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  • Doust, A. B., Wilk, K. E., Curmi, P. M. G., & Scholes, G. D. (2006). The photophysics of cryptophyte light harvesting. Journal of Photochemistry and Photobiology A: Chemistry, 184(1–2), 1–17.

    Article  CAS  Google Scholar 

  • Edwards, P. (1976). A classification of plants into higher taxa based on cytological and biochemical criteria. Taxon, 25(5–6), 529–542.

    Article  Google Scholar 

  • Ehrenberg, C.G. (1831). Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Berlin: Mittler.

    Google Scholar 

  • Ehrenberg, C. G. (1832). Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, Physikalische Klasse, 1831, 1–154.

    Google Scholar 

  • Ehrenberg, C. G. (1838). Die Infusionsthiere als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. Nebst einem Atlas von 64 colorirten Kupfertafeln (Vol. I + II). Leipzig: Voss.

    Book  Google Scholar 

  • Erata, M., Kubota, M., Takahashi, T., Inouye, I., & Watanabe, M. (1995). Ultrastructure and phototactic action spectra of two genera of cryptophyte flagellate algae, Cryptomonas and Chroomonas. Protoplasma, 188(3–4), 258–266.

    Article  Google Scholar 

  • Ettl, H. (1980). Über die Zweiteiligkeit der Chromatophoren bei Cryptomonaden. Plant Systematics and Evolution, 135(3–4), 227–234.

    Article  Google Scholar 

  • Ettl, H., & Moestrup, Ø. (1980). On an intracellular parasite in Cryptomonas (Cryptophyceae). Plant Systematics and Evolution, 135(3–4), 211–226.

    Article  Google Scholar 

  • Fields, S. D., & Rhodes, R. G. (1991). Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). Journal of Phycology, 27(4), 525–529.

    Article  Google Scholar 

  • Gantt, E., Edwards, M. R., & Provasoli, L. (1971). Chloroplast structure of the Cryptophyceae. The Journal of Cell Biology, 48(2), 280–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garibotti, I. A., Vernet, M., Ferrario, M. E., Smith, R. C., Ross, R. M., & Quetin, L. B. (2003). Phytoplankton spatial distribution patterns along the Western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261(1), 21–39.

    Article  Google Scholar 

  • Gasol, J. M., Guerrero, R., & Pedros-Alió, C. (1992). Spatial and temporal dynamics of a metalimnetic Cryptomonas peak. Journal of Plankton Research, 14(11), 1565–1579.

    Article  Google Scholar 

  • Gervais, F. (1997). Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. Journal of Plankton Research, 19(5), 533–550.

    Article  Google Scholar 

  • Gibbs, S. P. (1979). The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. Journal of Cell Science, 35(1), 253–256.

    CAS  PubMed  Google Scholar 

  • Gillott, M. A., & Gibbs, S. P. (1980). The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance. Journal of Phycology, 16(4), 558–568.

    Article  Google Scholar 

  • Gillott, M. A., & Gibbs, S. P. (1983). Comparison of the flagellar rootlets and periplast in two marine cryptomonads. Canadian Journal of Botany, 61(7), 1964–1978.

    Article  Google Scholar 

  • Glazer, A. N., & Wedemayer, G. J. (1995). Cryptomonad biliproteins – An evolutionary perspective. Photosynthesis Research, 46(1–2), 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. B., Fan, F., Hempel, F., Maier, U.-G., & Klösgen, R. B. (2007). Translocation of a phycoerythrin α subunit across five biological membranes. The Journal of Biological Chemistry, 282(41), 30295–30302.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. B., Waller, R. F., & McFadden, G. I. (2008). Plastid evolution. Annual Review of Plant Biology, 59(1), 491–517.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. B., Maier, U.-G., & Martin, W. F. (2015). Protein import and the origin of red complex plastids. Current Biology, 25(12), R515–R521.

    Article  CAS  PubMed  Google Scholar 

  • Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X., & Spudich, J. L. (2015). Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science, 349(6248), 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grim, J. N., & Staehelin, L. A. (1984). The ejectisomes of the flagellate Chilomonas paramecium: Visualization by freeze-fracture and isolation techniques. Journal of Protozoology, 31(2), 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, D. E., Stoecker, D. K., Johnson, M. D., Van Heukelem, W. F., & Sneider, K. (2000). Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature, 405(6790), 1049–1052.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann, M., & Pade, N. (2015). Heterosides – Compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biology, 17(5), 927–934.

    Article  CAS  PubMed  Google Scholar 

  • Hammer, A., Schumann, R., & Schubert, H. (2002). Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): Photosynthetic performance. Aquatic Microbial Ecology, 29(3), 287–296.

    Article  Google Scholar 

  • Harrop, S. J., Wilk, K. E., Dinshaw, R., Collini, E., Mirkovic, T., Teng, C. Y., Oblinsky, D. G., Green, B. R., Hoef-Emden, K., Hiller, R. G., Scholes, G. D., & Curmi, P. M. G. (2014). Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proceedings of the National Academy of Sciences of the United States of America, 111(26), E2666–E2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibberd, D. J. (1979). The structure of phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. BioSystems, 11(4), 243–261.

    Article  CAS  PubMed  Google Scholar 

  • Hibberd, D. J., Greenwood, A. D., & Bronwen Griffiths, H. (1971). Observations on the ultrastructure of the flagella and periplast in the Cryptophyceae. British Phycological Journal, 6(1), 61–72.

    Article  Google Scholar 

  • Hill, D. R. A. (1991a). A revised circumscription of Cryptomonas (Cryptophyceae) based on examinations of Australian strains. Phycologia, 30(2), 170–188.

    Article  Google Scholar 

  • Hill, D. R. A. (1991b). Chroomonas and other blue-green cryptomonads. Journal of Phycology, 27(1), 133–145.

    Article  Google Scholar 

  • Hill, D. R. A. (1991c). Diversity of heterotrophic cryptomonads. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 235–240). Oxford: Clarendon.

    Google Scholar 

  • Hill, D. R. A., & Rowan, K. S. (1989). The biliproteins of the Cryptophyceae. Phycologia, 28(4), 455–463.

    Article  Google Scholar 

  • Hill, D. R. A., & Wetherbee, R. (1986). Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia, 25(4), 521–543.

    Article  Google Scholar 

  • Hill, D. R. A., & Wetherbee, R. (1988). The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia, 27(3), 355–365.

    Article  Google Scholar 

  • Hill, D. R. A., & Wetherbee, R. (1989). A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia, 28(2), 143–158.

    Article  Google Scholar 

  • Hill, D. R. A., & Wetherbee, R. (1990). Guillardia theta gen. et sp. nov. (Cryptophyceae). Canadian Journal of Botany, 68(9), 1873–1876.

    Article  Google Scholar 

  • Hirakawa, Y., & Ishida, K.-I. (2014). Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biology and Evolution, 6(4), 974–980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoef-Emden, K. (2005). Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): Combined phylogenetic analyses of DNA sequences of the nuclear and nucleomorph ribosomal operons. Journal of Molecular Evolution, 60(2), 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden, K. (2007). Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia, 46(4), 402–428.

    Article  Google Scholar 

  • Hoef-Emden, K. (2008). Molecular phylogeny of phycocyanin-containing cryptophytes: Evolution of biliproteins and geographical distribution. Journal of Phycology, 44(4), 985–993.

    Article  PubMed  Google Scholar 

  • Hoef-Emden, K. (2014). Osmotolerance in the Cryptophyceae: Jacks-of-all-trades in the Chroomonas clade. Protist, 165(2), 123–143.

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden, K., & Melkonian, M. (2003). Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist, 154(3–4), 371–409. Corrigendum: Hoef-Emden, K., & Melkonian, M. (2008). Protist, 159(3), 507.

    Google Scholar 

  • Hoef-Emden, K., Marin, B., & Melkonian, M. (2002). Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. Journal of Molecular Evolution, 55(2), 161–179.

    Article  CAS  PubMed  Google Scholar 

  • Hollande, A. (1942). Protistologica XCI – Étude cytologique et biologique de quelques flagellés libres. Volvocales, cryptomonadines, eugléniens, protomastigines. Archives de Zoologie Éxperimental et Générale, 83(1), 1–268.

    Google Scholar 

  • Huber-Pestalozzi, G. (1950). Das Phytoplankton des Süßwassers. 3. Teil. Cryptophyceae, Chloromonadophyceae, Dinophyceae. In H.-J. Elster & W. Ohle (Eds.), Die Binnengewässer (1st ed., Vol. XVI, pp. 2–78). Stuttgart: E. Schweizerbarth’sche Verlagsbuchhandlung.

    Google Scholar 

  • Javornický, P., & Hindák, F. (1970). Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biológia (Bratislava), 25(4), 241–250.

    Google Scholar 

  • Jenkins, J., Hiller, R. G., Speirs, J., & Godovac-Zimmermann, J. (1990). A genomic clone encoding a cryptophyte phycoerythrin α-subunit. Evidence for three α-subunits and an N-terminal membrane transit sequence. FEBS Letters, 273(1–2), 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Kauss, H. (1981). Sensing of volume changes by Poterioochromonas involves a Ca2+-regulated rystem rhich controls activation of isofloridoside-phosphate synthase. Plant Physiology, 68(2), 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64(1), 583–607.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., Deane, J. A., Hink-Schauer, C., Douglas, S. E., Maier, U.-G., & McFadden, G. I. (1999). The secondary endosymbiont of the cryptomonad Guillardia theta contains alpha-, beta-, and gamma-tubulin genes. Molecular Biology and Evolution, 16(9), 1308–1313.

    Article  CAS  PubMed  Google Scholar 

  • Kereïche, S., Kouřil, R., Oostergetel, G. T., Fusetti, F., Boekema, E. J., Doust, A. B., van der Weij-de Wit, C. D., & Dekker, J. P. (2008). Association of chlorophyll a/c 2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. Biochimica et Biophysica Acta, 1777(9), 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., & Archibald, J. M. (2013). Ultrastructure and molecular phylogeny of the cryptomonad Goniomonas avonlea sp. nov. Protist, 164(2), 160–182.

    Article  CAS  PubMed  Google Scholar 

  • Klaveness, D. (1982). The Cryptomonas-Caulobacter consortium: Facultative ectocommensalism with possible taxonomic consequences? Nordic Journal of Botany, 2(2), 183–188.

    Article  Google Scholar 

  • Klaveness, D. (1985). Classical and modern criteria for determining species of the Cryptophyceae. Bulletin of the Plankton Society of Japan, 32(2), 111–123.

    Google Scholar 

  • Klaveness, D. (1988). Ecology of the Cryptomonadida: A first review. In C. D. Sandgren (Ed.), Growth and reproductive strategies of freshwater phytoplankton (pp. 105–133). Cambridge: Cambridge University Press.

    Google Scholar 

  • Knuckey, R. M., Semmens, G. L., Mayer, R. J., & Rimmer, M. A. (2005). Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis. Aquaculture, 249(1–4), 339–351.

    Article  Google Scholar 

  • Kugrens, P., & Clay, B. L. (2002). Cryptomonads. In J. D. Wehr & R. G. Sheath (Eds.), Freshwater algae of North America – Ecology and classification (pp. 715–755). San Diego: Academic.

    Google Scholar 

  • Kugrens, P., & Lee, R. E. (1987). An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze fracture techniques. Journal of Phycology, 23(Suppl. S2), 365–376.

    Article  Google Scholar 

  • Kugrens, P., & Lee, R. E. (1988). Ultrastructure of fertilization in a cryptomonad. Journal of Phycology, 24(3), 385–393.

    Article  Google Scholar 

  • Kugrens, P., & Lee, R. E. (1990). Ultrastructural evidence for bacterial incorporation and myxotrophy in the photosynthetic cryptomonad Chroomonas pochmanni Huber-Pestalozzi (Cryptomonadida). Journal of Protozoology, 37(4), 263–267.

    Article  Google Scholar 

  • Kugrens, P., & Lee, R. E. (1991). Organization of cryptomonads. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 2195–2233). Oxford: Clarendon.

    Google Scholar 

  • Kugrens, P., Lee, R. E., & Andersen, R. A. (1986). Cell form and surface patterns in Chroomonas and Cryptomonas cells (Cryptophyta) as revealed by scanning electron microscopy. Journal of Phycology, 22(4), 512–522.

    Article  Google Scholar 

  • Kugrens, P., Lee, R. E., & Andersen, R. A. (1987). Ultrastructural variations in cryptomonad flagella. Journal of Phycology, 23(4), 511–518.

    Article  Google Scholar 

  • Lane, C. E., & Archibald, J. M. (2008). New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). Journal of Phycology, 44(2), 439–450.

    Article  CAS  PubMed  Google Scholar 

  • Lane, C. E., van den Heuvel, K., Kozera, C., Curtis, B. A., Parsons, B. J., Bowman, S., & Archibald, J. M. (2007). Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19908–19913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24(4), 801–937.

    Article  Google Scholar 

  • Lazarus, D. B., & Jahn, R. (1998). Using the Ehrenberg collection. Diatom Research, 13(2), 273–291.

    Article  Google Scholar 

  • Lee, R. E., & Kugrens, P. (1991). Katablepharis ovalis, a colorless flagellate with interesting cytological characteristics. Journal of Phycology, 27(4), 505–515.

    Article  Google Scholar 

  • Lee, R. E., Kugrens, P., & Mylnikov, A. P. (1991). Feeding apparatus of the colorless flagellate Katablepharis (Cryptophyceae). Journal of Phycology, 27(6), 725–733.

    Article  Google Scholar 

  • Lee, W. J., Simpson, A. G. B., & Patterson, D. J. (2005). Free-living heterotrophic flagellates from freshwater sites in Tasmania (Australia), a field survey. Acta Protozoologica, 44(4), 321–350.

    Google Scholar 

  • Lewitus, A. J., Glasgow, H. B., & Burkholder, J. M. (1999). Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). Journal of Phycology, 35(2), 303–312.

    Article  Google Scholar 

  • Lichtlé, C. (1979). Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) – I. Cell and photosynthetic apparatus transformations and encystment. Protoplasma, 101(3), 283–299.

    Article  Google Scholar 

  • Lichtlé, C. (1980). Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) – II. Excystment. Protoplasma, 102(1–2), 11–19.

    Article  Google Scholar 

  • Lichtlé, C., Duval, J. C., & Lemoine, Y. (1987). Comparative biochemical, functional and ultrastructural studies of photosystem particles from a Cryptophycea: Cryptomonas rufescens; isolation of an active phycoerythrin particle. Biochimica et Biophysica Acta, 894(1), 76–90.

    Article  Google Scholar 

  • Ludwig, M., & Gibbs, S. P. (1985). DNA is present in the nucleomorph of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma, 127(1–2), 9–20.

    Article  Google Scholar 

  • Majaneva, M., Remonen, I., Rintala, J.-M., Belevich, I., Kremp, A., Setälä, O., Jokitalo, E., & Blomster, J. (2014). Rhinomonas nottbecki n. sp. (Cryptomonadales) and molecular phylogeny of the family Pyrenomonadaceae. Journal of Eukaryotic Microbiology, 61(5), 480–492.

    Article  CAS  PubMed  Google Scholar 

  • Marin, B., Klingberg, M., & Melkonian, M. (1998). Phylogenetic relationships among the Cryptophyta: Analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist, 149(3), 265–276.

    Article  CAS  PubMed  Google Scholar 

  • McFadden, G. I., Gilson, P. R., & Hill, D. R. A. (1994). Goniomonas: rRNA sequences indicate that that this phagotrophic flagellate is a close relative to the host component of cryptomonads. European Journal of Phycology, 29(1), 29–32.

    Article  Google Scholar 

  • McKerracher, L., & Gibbs, S. P. (1982). Cell and nucleomorph division in the alga Cryptomonas. Canadian Journal of Botany, 60(11), 2440–2452.

    Article  Google Scholar 

  • Melkonian, M., Beech, P. L., Katsaros, C., & Schulze, D. (1992). Centrin-mediated cell motility in algae. In M. Melkonian (Ed.), Algal cell motility (pp. 179–221). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Meyer, S. R., & Pienaar, R. N. (1984a). The microanatomy of Chroomonas africana sp. nov. (Cryptophyceae). South African Journal of Botany, 3(5), 306–319.

    Article  Google Scholar 

  • Meyer, S. R., & Pienaar, R. N. (1984b). Mitosis and cytokinesis in Chroomonas africana Meyer & Pienaar (Cryptophyceae). South African Journal of Botany, 3(5), 320–330.

    Article  Google Scholar 

  • Meyer, S. R. (1987). The taxonomic implications of the ultrastructure and cell division of a plastid-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa. South African Journal of Botany, 53(2), 129–139.

    Article  Google Scholar 

  • Mignot, J.-P. (1965). Étude ultrastructurale de (Cyathomonas truncata) From. (flagellé cryptomonadine). Journal de Microscopie, 4(2), 239–252.

    Google Scholar 

  • Mignot, J.-P., Joyon, L., & Pringsheim, E. G. (1968). Compléments a l’étude cytologique des cryptomonadines. Protistologica, 4(4), 493–506.

    Google Scholar 

  • Minnhagen, S., & Janson, S. (2006). Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiology Ecology, 57(1), 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Moore, C. E., Curtis, B., Mills, T., Tanifuji, G., & Archibald, J. M. (2012). Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biology and Evolution, 4(11), 1162–1175. doi:10.1093/gbe/evs090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrall, S., & Greenwood, A. D. (1980). A comparison of the periodic substructure of the trichocysts of the Cryptophyceae and Prasinophyceae. BioSystems, 12(1–2), 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Morrall, S., & Greenwood, A. D. (1982). Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. Journal of Cell Science, 54(1), 311–328.

    Google Scholar 

  • Novarino, G. (2003). A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia, 502(1–3), 225–270.

    Article  Google Scholar 

  • Novarino, G., Lucas, I. A. N., & Morrall, S. (1994). Observations on the genus Plagioselmis (Cryptophyceae). Cryptogamie Algologie, 15(2), 87–107.

    Google Scholar 

  • Oakley, B. R. (1978). Mitotic spindle formation in Cryptomonas and Chroomonas (Cryptophyceae). Protoplasma, 95(4), 333–346.

    Article  Google Scholar 

  • Oakley, B. R., & Bisalputra, T. (1977). Mitosis and cell division in Cryptomonas (Cryptophyceae). Canadian Journal of Botany, 55(22), 2789–2800.

    Article  Google Scholar 

  • Oakley, B. R., & Dodge, J. D. (1976). The ultrastructure of mitosis in Chroomonas salina (Cryptophyceae). Protoplasma, 88(2–4), 241–254.

    Article  Google Scholar 

  • Okamoto, N., & Inouye, I. (2005). The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta Divisio Nova/Katablepharida Phylum Novum based on SSU rDNA and beta-tubulin phylogeny. Protist, 156(2), 163–179.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, N., Chantangsi, C., Horák, A., Leander, B. S., & Keeling, P. J. (2009). Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One, 4(9), e7080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onuma, R., & Horiguchi, T. (2015). Kleptochloroplast enlargement, karyoklepty and the distribution of the cryptomonad nucleus in Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae). Protist, 166(2), 177–195.

    Article  CAS  PubMed  Google Scholar 

  • Oudot-Le Secq, M.-P., Grimwood, J., Shapiro, H., Armbrust, E. V., Bowler, C., & Green, B. R. (2007). Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: Comparison with other plastid genomes of the red lineage. Molecular Genetics and Genomics, 277(4), 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Patron, N. J., Inagaki, Y., & Keeling, P. J. (2007). Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Current Biology, 17(10), 887–891.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. J., & Hausmann, K. (1981). The behaviour of contractile vacuole complexes of cryptophycean flagellates. British Phycological Journal, 16(4), 429–439.

    Article  Google Scholar 

  • Patterson, D. J., & Simpson, A. G. B. (1996). Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. European Journal of Protistology, 32(4), 423–448.

    Article  Google Scholar 

  • Pedrós-Alió, C., Massana, R., Latasa, M., García-Cantizano, J., & Gasol, J. M. (1995). Predation by ciliates on a metalimnetic Cryptomonas population: Feeding rates, impact and effects of vertical migration. Journal of Plankton Research, 17(11), 2131–2154.

    Article  Google Scholar 

  • Pennick, N. (1981). Flagellar scales in Hemiselmis brunnescens Butcher and H. virescens Droop (Cryptophyceae). Archiv für Protistenkunde, 124(3), 267–270.

    Article  Google Scholar 

  • Pennington, F. C., Haxo, F. T., Borch, G., & Liaaen-Jensen, S. (1985). Carotenoids of Cryptophyceae. Biochemical Systematics and Ecology, 13(3), 215–219.

    Article  CAS  Google Scholar 

  • Perasso, L., Hill, D. R. A., & Wetherbee, R. (1992). Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma, 170(1–2), 53–67.

    Article  Google Scholar 

  • Perasso, L., Brett, S. J., & Wetherbee, R. (1993). Pole reversal and the development of cell asymmetry during division in cryptomonad flagellates. Protoplasma, 174(1–2), 19–24.

    Article  Google Scholar 

  • Phlips, E. J., Havens, K. E., & Marques Lopes, M. R. (2008). Seasonal dynamics of phytoplankton in two Amazon flood plain lakes of varying hydrologic connectivity to the main river channel. Fundamental and Applied Limnology, 172(2), 99–109.

    Article  CAS  Google Scholar 

  • Pringsheim, E. G. (1944). Some aspects of taxonomy in the Cryptophyceae. New Phytologist, 43(2), 143–150.

    Article  Google Scholar 

  • Pringsheim, E. G. (1968). Zur Kenntnis der Cryptomonaden des Süßwassers. Nova Hedwigia, 16, 367–401.

    Google Scholar 

  • Rao, D. V. S., Pan, Y., Zitko, V., Bugden, G., & Mackeigan, K. (1993). Diarrhetic shellfish poisoning (DSP) associated with a subsurface bloom of Dinophysis norvegica in Bedford Basin, eastern Canada. Marine Ecology Progress Series, 97(1), 117–126.

    Google Scholar 

  • Roberts, K. R. (1984). Structure and significance of the cryptomonad flagellar apparatus. I. Cryptomonas ovata (Cryptophyta). Journal of Phycology, 20(4), 590–599.

    Article  Google Scholar 

  • Roberts, E. C., & Laybourn-Parry, J. (1999). Mixotrophic cryptophytes and their predators in the Dry Valley Lakes of Antarctica. Freshwater Biology, 41(4), 737–746.

    Article  Google Scholar 

  • Roberts, K. R., Stewart, K. D., & Mattox, K. R. (1981). The flagellar apparatus of Chilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. Journal of Phycology, 17(2), 159–167.

    Article  Google Scholar 

  • Sánchez Puerta, M. V., & Delwiche, C. F. (2008). A hypothesis for plastid evolution in chromalveolates. Journal of Phycology, 44(5), 1097–1107.

    Article  PubMed  Google Scholar 

  • Sánchez Puerta, M. V., Bachvaroff, T. R., & Delwiche, C. F. (2005). The complete plastid genome sequence of the haptophyte Emiliania huxleyi: A comparison to other plastid genomes. DNA Research, 12(2), 151–156.

    Article  PubMed  Google Scholar 

  • Santore, U. J. (1982). The ultrastructure of Hemiselmis brunnescens and Hemiselmis virescens with additional observations on Hemiselmis rufescens and comments on the Hemiselmidaceae as a natural group of the Cryptophyceae. British Phycological Journal, 17(1), 81–99.

    Article  Google Scholar 

  • Santore, U. J. (1983). Flagellar and body scales in the Cryptophyceae. British Phycological Journal, 18(3), 239–248.

    Article  Google Scholar 

  • Santore, U. J. (1984). Some aspects of taxonomy in the Cryptophyceae. New Phytologist, 98(4), 627–646.

    Article  Google Scholar 

  • Santore, U. J. (1985). A cytological survey of the genus Cryptomonas (Cryptophyceae) with comments on its taxonomy. Archiv für Protistenkunde, 130(1–2), 1–52.

    Article  Google Scholar 

  • Santore, U. J. (1987). A cytological survey of the genus Chroomonas – With comments on the taxonomy of this natural group of the Cryptophyceae. Archiv für Protistenkunde, 134(1), 83–114.

    Article  Google Scholar 

  • Santore, U. J., & Greenwood, A. D. (1977). The mitochondrial complex in Cryptophyceae. Archives of Microbiology, 112(2), 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Nagasato, C., Hara, Y., & Motomura, T. (2014). Cell cycle and nucleomorph division in Pyrenomonas helgolandii (Cryptophyta). Protist, 165(2), 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Schnepf, E., & Melkonian, M. (1990). Bacteriophage-like particles in endocytic bacteria of Cryptomonas (Cryptophyceae). Phycologia, 29(3), 338–343.

    Article  Google Scholar 

  • Schnepf, E., Winter, S., & Mollenhauer, D. (1989). Gymnodinium aeruginosum (Dinophyta) – A blue-green dinoflagellate with a vestigial anucleate, cryptophycean endosymbiont. Plant Systematics and Evolution, 164(1–4), 75–91.

    Article  Google Scholar 

  • Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), 113–136.

    Article  Google Scholar 

  • Sensen, C. W., Heimann, K., & Melkonian, M. (1993). The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting (FACS). European Journal of Phycology, 28(2), 93–97.

    Article  Google Scholar 

  • Shalchian-Tabrizi, K., Brate, J., Logares, R., Klaveness, D., Berney, C., & Jakobsen, K. S. (2008). Diversification of unicellular eukaryotes: Cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environmental Microbiology, 10(10), 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  • Skuja, H. (1948). Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsaliensis, 9(1), 1–399.

    Google Scholar 

  • Sleigh, M. A. (1991). Mechanisms of flagellar propulsion. A biologist’s view of the relation between structure, motion, and fluid mechanics. Protoplasma, 164(1–3), 45–53.

    Article  Google Scholar 

  • Starmach, K. (1974). Cryptophyceae – Kryptofity, Dinophyceae – Dinofity, Raphidophyceae – Rafidofity. In K. Starmach & J. Siemińska (Eds.), Flora Słodkowodna Polski (Vol. 4, pp. 7–112). Warszawa: Państwowe Wydawnictwo Naukowe.

    Google Scholar 

  • Stiller, J. W., Schreibe, J., Yue, J., Guo, H., Ding, Q., & Huang, J. (2014). The evolution of photosynthesis in chromist algae through serial endosymbioses. Nature Communications, 5, 5764. doi:10.1038/ncomms6764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surek, B., & Melkonian, M. (2004). CCAC – Culture Collection of Algae at the University of Cologne: A new collection of axenic algae with emphasis on flagellates. Nova Hedwigia, 79(1–2), 77–92.

    Article  Google Scholar 

  • Takishita, K., Koike, K., Maruyama, T., & Ogata, T. (2002). Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist, 153(3), 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Tanifuji, G., Onodera, N. T., Wheeler, T. J., Dlutek, M., Donaher, N., & Archibald, J. M. (2011). Complete nucleomorph genome sequence of the non-photosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biology and Evolution, 3, 44–54. doi:10.1093/gbe/evq082.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D. L., & Lee, C. C. (1971). A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Archiv für Mikrobiologie, 75(4), 269–280.

    Article  Google Scholar 

  • Telford, W. G., Moss, M. W., Morseman, J. P., & Allnutt, F. C. T. (2001). Cryptomonad algal phycobiliproteins as fluorochromes for extracellular antigen detection by flow cytometry. Cytometry, 44(1), 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Tirok, K., & Gaedke, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquatic Mircobial Ecology, 49(1), 87–100.

    Article  Google Scholar 

  • Tranvik, L. J., Porter, K. G., & Sieburth, J. M. (1989). Occurrence of bacterivory in Cryptomonas, a common fresh-water phytoplankter. Oecologia, 78(4), 473–476.

    Article  PubMed  Google Scholar 

  • Vesk, M., Dwarte, D., Fowler, S., & Hiller, R. G. (1992). Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte. Protoplasma, 170(3–4), 166–176.

    Article  Google Scholar 

  • Viola, R., Nyvall, P., & Pedersen, M. (2001). The unique features of starch metabolism in red algae. Proceedings of the Royal Society of London B, 268(1474), 1417–1422.

    Article  CAS  Google Scholar 

  • von der Heyden, S., Chao, E. E., & Cavalier-Smith, T. (2004). Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. European Journal of Phycology, 39(4), 343–350.

    Article  CAS  Google Scholar 

  • Wawrik, F. (1969). Sexualität bei Cryptomonas sp. und Chlorogonium maximum. Nova Hedwigia, 8, 283–292.

    Google Scholar 

  • Wawrik, F. (1971). Zygoten und Cysten bei Stenocalyx klarnetii (Bourr.) Fott, Stenocalyx inkonstans Schmid und Chroomonas acuta Uterm. Nova Hedwigia, 21, 599–604.

    Google Scholar 

  • Wawrik, F. (1979). Eisschluß- und Eisbruchvegetationen in den Teichen des nördlichen Waldviertels 1977/1978. Archiv für Protistenkunde, 122(3–4), 247–266.

    Article  Google Scholar 

  • Weisse, T., & Kirchhoff, B. (1997). Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis beroliense on cryptophytes: Analysis by flow cytometry and electronic particle counting. Aquatic Microbial Ecology, 12(2), 153–164.

    Article  Google Scholar 

  • Wetherbee, R., Hill, D. R. A., & McFadden, G. I. (1986). Periplast structure of the cryptomonad flagellate Hemiselmis brunnescens. Protoplasma, 131(1), 11–22.

    Article  Google Scholar 

  • Wilk, K. E., Harrop, S. J., Jankova, L., Edler, D., Keenan, G., Sharples, F., et al. (1999). Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 8901–8906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., et al. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamagishi, T., Kai, A., & Kawai, H. (2012). Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium. Journal of Molecular Evolution, 74(3–4), 147–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerstin Hoef-Emden or John M. Archibald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hoef-Emden, K., Archibald, J.M. (2017). Cryptophyta (Cryptomonads). In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_35

Download citation

Publish with us

Policies and ethics