Skip to main content

Diagnostic Applications of Nuclear Medicine: Leukemias

Nuclear Oncology

Abstract

Leukemias are a group of acute and chronic hematological neoplasias characterized by the dissemination of the cancer cells originating in the bone marrow via the bloodstream. In 2016 the estimated number of new leukemia cases was more than 110,000 in all of Europe and 47,000 in the USA. Leukemias, cause of 4% of all cancer deaths and account for 3.6% of all cancers. Historically, leukemias have been divided into four major categories further classified into subtypes based on specific features of cells: acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML). A revised classification of myeloid/lymphoid neoplasms and leukemias has recently been published to better characterize each disease. This updated classification incorporated new scientific and clinical information to refine diagnostic criteria for previously described neoplasms and introduced newly recognized disease entities. In this chapter the main entities of leukemia, with specific regard to imaging for diagnosis, treatment response assessment, and follow-up, will be treated according to what reported in the clinical guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3’-18F-Fluoro-3’-deoxythymidine

aCGH:

Array comparative genomic hybridization

aCML:

Atypical chronic myeloid leukemia

ALK:

Anaplastic large-cell lymphoma

ALL:

Acute lymphoblastic leukemia, also defined as “acute lymphocytic leukemia”

AML:

Acute myeloid leukemia, also defined as “acute myelogenous leukemia”

B-ALL:

B-cell acute lymphoblastic leukemia

BCL2:

Gene encoding for the B-cell lymphoma 2 protein

BCL6:

Gene encoding for the B-cell lymphoma 6 protein

BCR-ABL1:

Fusion gene formed by a translocation between chromosomes 9 and 22 [t(9;22)]

BM:

Bone marrow

CBFB-MYH11:

Chimeric transcript created by the inversion (16)(p13;q22)

CEBPA:

Gene encoding for the protein CCAAT/enhancer-binding protein alpha

CHOP:

Chemotherapy based on cyclophosphamide, vincristine, doxorubicin, and dexamethasone

CLL:

Chronic lymphocytic leukemia, also defined as “chronic lymphocytic leukemia”

CML:

Chronic myeloid leukemia, also defined as “chronic myelogenous leukemia”

CMML:

Chronic myelomonocytic leukemia

CNL:

Chronic neutrophilic leukemia

CNS:

Central nervous system

CR:

Complete response

CRLF2:

Cytokine receptor-like factor 2

CT:

X-ray computed tomography

DEK-NUP214:

Gene fusion created by the t(6;9)(p23;q34) translocation

DLBCL:

Diffuse large B-cell lymphoma

EBV:

Epstein-Barr virus

ESMO:

European Society of Medical Oncology

ET:

Essential thrombocythemia

EUTOS:

European Treatment and Outcome Study

FGFR:

Receptor tyrosine kinase for the fibroblast growth factor family

FISH:

Fluorescence in situ hybridization

GATA2:

Gene encoding for a protein called GATA binding protein 2, a transcription factor

GEP:

Gene expression profiling

HCL:

Hairy cell leukemia

HHV8:

Human herpesvirus-8

HL:

Hodgkin’s lymphoma

HLA:

Human leukocyte antigen

iAMP21:

Intrachromosomal amplification of chromosome 21

IgG:

Immunoglobulin G

Igh:

Immunoglobulin heavy chain

IGH/IL3:

Fusion gene created by the t(5;14)(q31;q32) translocation

IGHV:

Immunoglobulin heavy chain

IWCLL:

International Working Group on CLL

JAK-STAT:

Signaling pathway that transmits information from extracellular chemical signals to the nucleus resulting in DNA transcription and expression of genes involved in immunity, proliferation, differentiation, apoptosis, and oncogenesis

JAK2:

Gene encoding for Janus kinase 2, a non-receptor tyrosine kinase

JMML:

Juvenile myelomonocytic leukemia

KMT2A:

Gene encoding for histone-lysine (K)-specific N-methyltransferase 2A

KMT2C:

Gene encoding for lysine (K)-specific methyltransferase 2C

LAIP:

Leukemia-associated immunophenotype

MALT:

Mucosa-associated lymphoid tissue

MBL:

Monoclonal B lymphocytosis

MCL:

Mantle cell lymphoma

MDS-RS:

Myelodysplastic syndrome with ring sideroblasts

MDS:

Myelodysplastic syndrome

MDS/MPN:

Myelodysplastic/Myeloproliferative neoplasms

MECOM:

Gene econding for the protein MDS1 and EVI1 complex locus protein EVI1, also known as ecotropic virus integration site 1 protein homolog, or positive regulatory domain zinc finger protein 3

MGUS:

Monoclonal gammopathy of undetermined significance

MLL-MLLT3:

Gene fusion created by the t(9;11)(p22;q23) translocation

MPAL:

Mixed phenotype acute leukemia

MR:

Molecular response

MRD:

Minimal residual disease

MRI:

Magnetic resonance imaging

MYC:

Avian myelocytomatosis viral oncogene homolog

NGS:

Next-generation sequencing

NK:

Natural killer

NMP1:

Gene encoding for the protein nucleophosmin

NOS:

Not otherwise specified

NOTCH1:

Notch homolog 1, translocation-associated (Drosophila), a human gene encoding for a single-pass transmembrane receptor

NSCLC:

Non-small-cell lung cancer

PB:

Peripheral blood

PCM1-JAK2:

Gene fusion created by the t(8;9)(p22;p24) translocation which leads to the activation of the Janus kinase 2PCM1 gene encoding for the pericentriolar material 1

PD:

Progressive disease

PDGFR:

Platelet-derived growth factor receptor

PDGFRA:

Gene encoding for the platelet-derived growth factor receptor alpha

PDGFRB:

Gene encoding for the platelet-derived growth factor receptor beta

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PI3K/AKT/mTOR:

Intracellular signaling pathway important in regulating the cell cycle

PMF:

Primary myelofibrosis

PML-RARA:

Gene fusion created by the t(15;17)(q22;q12) translocation

PMN:

Myeloproliferative neoplasms

PR:

Partial response

PTLD:

Posttransplant lymphoproliferative disorders

PV:

Polycythemia vera

RT-PCR:

Reverse transcriptase polymerase chain reaction

RUNX1-RUNX1T1:

Gene fusion created by the t(8;21)(q22;q22) translocation

RUNX1:

Runt-related transcription factor 1

SBB:

Sudan Black B, a nonfluorescent lysochrome (fat-soluble) diazo dye used for tissue staining

SCT:

Stem cell transplantation

SEER:

Surveillance, Epidemiology, and End Results Program of the National Cancer Institute (National Institutes of Health of the United States)

SLL:

Small lymphocytic lymphoma

SNP:

Single-nucleotide polymorphism

T-ALL:

T-cell acute lymphoblastic leukemia

TAM:

Transient abnormal myelopoiesis

TKI:

Tyrosine kinase inhibitor

T-ALL:

T-cell acute lymphoblastic leukemia

TCF3-PBX1:

Chimeric gene created by the t(1;19)(q23;p13) translocation

TFH:

T follicular helper

WHO:

World Health Organization

References

  1. Surveillance Research Program, National Cancer Institute. Cancer stat fact sheets [Internet]. Cancer Stat.Surveill Res Program, Natl Cancer Inst.2016. Available from: http://seer.cancer.gov/statfacts

  2. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.

    Google Scholar 

  3. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Google Scholar 

  4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Google Scholar 

  5. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.

    Google Scholar 

  6. Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood. 2009;113:1408–11.

    Article  CAS  PubMed  Google Scholar 

  7. Al Ustwani O, Gupta N, Bakhribah H, Griffiths E, Wang E, Wetzler M. Clinical updates in adult acute lymphoblastic leukemia. Crit Rev Oncol Hematol. 2016;99:189–99.

    Article  PubMed  Google Scholar 

  8. Moorman AV, Harrison CJ, Buck GAN, Richards SM, Lorna M, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) Karyotype is an independent prognostic factor in adult acute lymphoblast. Blood. 2007;109:3189–97.

    Article  CAS  PubMed  Google Scholar 

  9. Belkov VM, Krynetski EY, Schuetz JD, Yanishevski Y, Masson E, Mathew S, et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood. 1999;93:1643–50.

    CAS  PubMed  Google Scholar 

  10. Rocha JC, Cheng C, Liu W, Kishi S, Das S, Cook EH, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005;105:4752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohlbacher V, Zenger M, Schnittger S, Weissmann S, Kunze F, Kohlmann A, et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosom Cancer. 2014;53:524–36.

    Article  CAS  Google Scholar 

  12. Stock W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology. 2010;2010:21–9.

    Article  PubMed  Google Scholar 

  13. Moorman AV, Chilton L, Wilkinson J, Ensor HM, Bown N, Proctor SJ. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Cytogenetics. 2010;115:206–14.

    CAS  Google Scholar 

  14. Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006;2006(1):133–41.

    Google Scholar 

  15. Lee HJ, Thompson JE, Wang ES, Wetzler M. Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2011;117:1583–94.

    Article  PubMed  Google Scholar 

  16. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schnapp LM. Another notch on the belt. Blood. 2009;113:1615–6.

    Article  CAS  PubMed  Google Scholar 

  18. Dail M, Wong J, Lawrence J, O’Connor D, Nakitandwe J, Chen S-C, et al. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature. 2014;513:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 2007;13:70–7.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Manero G, Yang H, Kuang S-Q, O’Brien S, Thomas D, Kantarjian H. Epigenetics of acute lymphocytic leukemia. Semin Hematol. 2009;46:24–32.

    Article  CAS  PubMed  Google Scholar 

  22. Burke MJ, Lamba JK, Pounds S, Cao X, Ghodke-Puranik Y, Lindgren BR, et al. A therapeutic trial of decitabine and vorinostat in combination with chemotherapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2014;89:889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roman-Gomez J, Jimenez-Velasco A, Barrios M, Prosper F, Heiniger A, Torres A, et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma. 2007;48:1269–82.

    Article  CAS  PubMed  Google Scholar 

  24. Maude S, Tasian S, Vincent T, Hall J, Sheen C, Roberts K, et al. Targeting JAK1 / 2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rabin K, Mason C, Gurusiddappa S, Eastwood Leung H, Morrison D, Bhojwani D, et al. IKZF1 and 22q11 . 22 deletions and PDGFRA gains are associated with poor outcome in down syndrome acute lymphoblastic leukemia. Blood. 2012;120:289.

    Google Scholar 

  26. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  27. Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6:6–7.

    Article  Google Scholar 

  28. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;00:1–14.

    Google Scholar 

  29. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leuk Off J Leuk Soc Am Leuk Res Fund UK. 1995;9:1783–6.

    CAS  Google Scholar 

  30. Béné MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet work package 10. Leukemia. 2011;25:567–74.

    Article  PubMed  Google Scholar 

  31. Matutes E, Pickl WF, Van Veer M, Morilla R, Swansbury J, Strobl H, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117:3163–71.

    Article  CAS  PubMed  Google Scholar 

  32. van Dongen JJ, Lhermitte L, Böttcher S, Almeida J, van der Velden VH, Rawstron A. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gleißner B, Gökbuget N, Bartram CR, Janssen B, Rieder H, Janssen JWG, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99:1536–43.

    Article  PubMed  Google Scholar 

  34. Brüggemann M, Raff T, Kneba M, Dc W, Bru M, Raff T, et al. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120:4470–81.

    Article  PubMed  CAS  Google Scholar 

  35. Faderl S, O’brien S, Pui C, Stock W, Wetzler M, Hoelzer D, Kantarjian H. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer. 2010;116:1165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cortes J. Central nervous system involvement in adult acute lymphoblastic leukemia. Hematology. 2008;13:293–302.

    Article  Google Scholar 

  37. Ye CC, Echeverri C, Anderson JE, Smith JL, Glassman A, Gulley ML, et al. T-cell blast crisis of chronic myelogenous leukemia manifesting as a large mediastinal tumor. Hum Pathol. 2002;33:770–3.

    Article  PubMed  Google Scholar 

  38. Jaing TH, Hsueh C, Chiu CH, Shih IH, Chan CK, Hung IJ. Cutaneous lymphocytic vasculitis as the presenting feature of acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2002;24:555–7.

    Article  PubMed  Google Scholar 

  39. Mayo GL, Carter JE, McKinnon SJ. Bilateral optic disk edema and blindness as initial presentation of acute lymphocytic leukemia. Am J Ophthalmol. 2002;134:141–2.

    Article  PubMed  Google Scholar 

  40. Fenaux P, Bourhis JH. Burkitt’s Acute Lymphocytic Leukemia (L3ALL) in adults. Hematol Clin. 2001;15:37–50.

    Article  CAS  Google Scholar 

  41. Shibata K, Shimamoto Y, Watanabe M, Kikuchi M, Yamaguchi M. Two cases of acute lymphocytic leukaemia associated with bone marrow necrosis–a brief review of recent literature. Eur J Haematol. 1994;52:115–6.

    Article  CAS  PubMed  Google Scholar 

  42. © 2010 MedSolutions Inc. Pediatric and Congenital Imaging Guidelines Oncology and PET. 2010.

    Google Scholar 

  43. Soni PN. Hypercalcaemia and multiple osteolytic lesions in childhood acute lymphoblastic leukaemia. Postgrad Med J. 1993;69:483–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shalaby-Rana E, Majd M. Scintigraphic findings in children with leukemia : value of early and delayed whole-body imaging. J Nucl Med. 2001;42:878–83.

    CAS  PubMed  Google Scholar 

  45. Hann IM, Evans DI, Palmer MK, Morris-Jones PJ, Haworth C. The prognostic significance of morphological features in childhood acute lymphoblastic leukaemia. Clin Lab Haematol. 1979;1:215–26.

    Article  CAS  PubMed  Google Scholar 

  46. Araki T. Leukemic involvement of the kidney in children : CT features. J Comput Assist Tomogr. 1982;6:781–4.

    Article  CAS  PubMed  Google Scholar 

  47. Lin P, Chang T, Jang R, Chiou S. Hepatosplenic microabscesses in pediatric leukemia : a report of five cases. Kaohsiung J Med Sci. 2003;19:368–74.

    PubMed  Google Scholar 

  48. Hilmes MA, Dillman JR, Mody RJ, Strouse PJ. Pediatric renal leukemia: spectrum of CT imaging findings. Pediatr Radiol. 2008;38:424–30.

    Article  PubMed  Google Scholar 

  49. Porto L, Kieslich M, Schwabe D, Zanella FE, Lanfermann H. Central nervous system imaging in childhood leukaemia. Eur J Cancer. 2004;40:2082–90.

    Article  CAS  PubMed  Google Scholar 

  50. Kayahan Ulu EM, Töre HG, Bayrak A, Güngör D, Coşkun M. MRI of central nervous system abnormalities in childhood leukemia. Diagn Interv Radiol. 2009;15:86–92.

    Google Scholar 

  51. Cunningham I, Kohno B. 18FDG-PET/CT: 21st century approach to leukemic tumors in 124 cases. Am J Hematol. 2016;91:379–84.

    Article  PubMed  Google Scholar 

  52. Zhou WL, Wu HB, Wang LJ, Tian Y, Dong Y, Wang QS. Usefulness and pitfalls of F-18-FDG PET/CT for diagnosing extramedullary acute leukemia. Eur J Radiol. 2016;85:205–10.

    Article  PubMed  Google Scholar 

  53. Shuper A, Stark B, Kornreich L, Cohen IJ, Avrahami G, Yaniv I. Methotrexate-related neurotoxicity in the treatment of childhood acute lymphoblastic leukemia. Isr Med Assoc J. 2002;4:1050–3.

    CAS  PubMed  Google Scholar 

  54. Lutz K, von Komorowski G, Dürken M, Engelhardt R, Dinter DJ. Myocardial iron overload in transfusion-dependent pediatric patients with acute leukemia. Pediatr Blood Cancer. 2008;51:691–3.

    Article  CAS  PubMed  Google Scholar 

  55. Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v78–84.

    Article  PubMed  Google Scholar 

  56. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rawstron AC, Bennett FL, O’Connor SJ, Kwok M, Fenton JA, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  CAS  PubMed  Google Scholar 

  58. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004;200:519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caligaris-Cappio F, Hamblin TJ. B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol. 1999;17:399–408.

    Article  CAS  PubMed  Google Scholar 

  60. Kröber A, Seiler T, Benner A, Bullinger L, Brückle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.

    PubMed  Google Scholar 

  61. Rai KR, Sawitsky A, Cronkite E, Chanana A, Levy R, Pasternack B. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46:219–34.

    CAS  PubMed  Google Scholar 

  62. Binet J, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48:198–206.

    Article  CAS  PubMed  Google Scholar 

  63. Oppezzo P, Dumas G, Lalanne AI, Payelle-brogard B, Magnac C, Dighiero G, et al. Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells. Blood. 2005;105:2495–503.

    Article  CAS  PubMed  Google Scholar 

  64. Fulci V, Chiaretti S, Goldoni M, Azzalin G, CArucci N, Tavolaro S, et al. Quantitative technologies establish a novel microRNA profile. Blood. 2007;109:4944–51.

    Article  CAS  PubMed  Google Scholar 

  65. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L, et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood. 2005;105:3042–50.

    Article  CAS  PubMed  Google Scholar 

  66. Baliakas P, Hadzidimitriou A, Sutton L, Rossi D, Minga E, Villamor N, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29:329–36.

    Article  CAS  PubMed  Google Scholar 

  67. Oscier D, Fegan C, Hillmen P, Illdge T, Johnson S, Maguire P, et al. Guidelines on the diagnosis and management of chronic lymphocytic leukaemia. Br J Haematol. 2004;125:294–317.

    Article  CAS  PubMed  Google Scholar 

  68. Muntanola A, Bosch F, Arguis P, Arellano-Rodrigo E, Ayuso C, Giné E, et al. Abdominal computed tomography predicts progression in patients with Rai stage 0 chronic lymphocytic leukemia. J Clin Oncol. 2007;25:1576–80.

    Article  PubMed  Google Scholar 

  69. Swords R, Bruzzi J, Giles F. Recent advances in the diagnosis and therapy of Richter’s syndrome. Med Oncol. 2007;24:17–32.

    Article  CAS  PubMed  Google Scholar 

  70. Michallet A-S, Sesques P, Rabe KG, Itti E, Tordot J, Tychyj-Pinel C, et al. An 18F-FDG-PET maximum standardized uptake value >10 represents a novel valid marker for discerning Richter’s syndrome. Leuk Lymphoma. 2016;57:1474–7.

    Article  PubMed  Google Scholar 

  71. Mauro FR, Chauvie S, Paoloni F, Biggi A, Cimino G, Rago A, et al. Diagnostic and prognostic role of PET/CT in patients with chronic lymphocytic leukemia and progressive disease. Leukemia. 2015;29:1360–5.

    Article  CAS  PubMed  Google Scholar 

  72. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SMB, Haynes A, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005;23:2971–9.

    Article  CAS  PubMed  Google Scholar 

  73. Böttcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch RM, Fingerle-Rowson G, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30:980–8.

    Article  PubMed  Google Scholar 

  74. Vela CM, McBride A, Jaglowski SM, Andritsos LA. Ibrutinib for treatment of chronic lymphocytic leukemia. Am J Health Syst Pharm. 2016;73:367–75.

    Article  CAS  PubMed  Google Scholar 

  75. Robak P, Smolewski P, Robak T. Emerging immunological drugs for chronic lymphocytic leukemia. Expert Opin Emerg Drugs. 2015;20(3):423–47.

    Google Scholar 

  76. Jain N, O’Brien S. Initial treatment of CLL: integrating biology and functional status. Blood. 2015;126:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood. 2016;127:279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Robak T, Matutes E, Catovsky D, Zinzani PL, Buske C. Hairy cell leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v100–7.

    Article  PubMed  Google Scholar 

  79. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    Article  CAS  PubMed  Google Scholar 

  80. Grever M, Blachly J, Andritsos L. Hairy cell leukemia: update on molecular profiling and therapeutic advances. Blood Rev. 2014;28:197–203.

    Article  CAS  PubMed  Google Scholar 

  81. Del Giudice I, Matutes E, Morilla R, Morilla A, Owusu-Ankomah K, Rafiq F, et al. The diagnostic value of CD123 in B-cell disorders with hairy or villous lymphocytes. Haematologica. 2004;89:303–8.

    PubMed  Google Scholar 

  82. Matutes E. Immunophenotyping and differential diagnosis of hairy cell leukaemia. Hematol Oncol Clin North Am. 2006;20:1051–63.

    Article  PubMed  Google Scholar 

  83. Pillai V, Pozdnyakova O, Charest K, Li B, Shahsafaei A, Dorfman DM. CD200 flow cytometric assessment and semiquantitative immunohistochemical staining distinguishes hairy cell leukemia from hairy cell leukemia-variant and other B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140:536–43.

    Article  PubMed  Google Scholar 

  84. Andrulis M, Penzel R, Weichert W, Von Deimling A, Capper D. Application of a BRAF V600E mutation-specific antibody for the diagnosis of hairy cell leukemia. Am J Surg Pathol. 2012;36:1796–800.

    Article  PubMed  Google Scholar 

  85. Ahmadzadeh A, Shahrabi S, Jaseb K, Norozi F, Shahjahani M, Vosoughi T, et al. BRAF mutation in hairy cell leukemia. Oncol Rev. 2014;8:22–5.

    Article  CAS  Google Scholar 

  86. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli M, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364:1–2305–15.

    Article  Google Scholar 

  87. Dietrich S, Pircher A, Endris V, Peyrade F, Wendtner C-M, Follows GA, et al. BRAF inhibition in hairy cell leukemia with low dose vemurafenib. Blood. 2016;127(23):2847–55.

    Google Scholar 

  88. Hockley SL, Giannouli S, Morilla A, Wotherspoon A, Morgan GJ, Matutes E, et al. Insight into the molecular pathogenesis of hairy cell leukaemia, hairy cell leukaemia variant and splenic marginal zone lymphoma, provided by the analysis of their IGH rearrangements and somatic hypermutation patterns. Br J Haematol. 2010;148:666–9.

    Article  PubMed  Google Scholar 

  89. Forconi F, Sozzi E, Cencini E, Zaja F, Intermesoli T, Stelitano C, et al. Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to single-agent cladribine and with more aggressive behavior. Blood. 2009;114:4696–702.

    Article  CAS  PubMed  Google Scholar 

  90. Arons E, Suntum T, Stetler-stevenson M, Kreitman RJ, Dc W. VH4–34+ hairy cell leukemia, a new variant with poor prognosis despite standard therapy. Blood. 2009;114:4687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hockley SL, Else M, Morilla A, Wotherspoon A, Dearden C, Catovsky D, et al. The prognostic impact of clinical and molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma. Br J Haematol. 2012;158:347–54.

    Article  CAS  PubMed  Google Scholar 

  92. Mercieca J, Puga M, Matutes E, Moskovic E, Salim S, Catovsky D. Incidence and significance of abdominal lymphadenopathy in hairy cell leukaemia. Leuk Lymphoma. 1994;14 Suppl 1:79–83.

    PubMed  Google Scholar 

  93. Janik JE. Tumor markers in hairy cell leukemia. Leuk Lymphoma. 2011;52 Suppl 2:69–71.

    Article  PubMed  Google Scholar 

  94. Hisada M, Chen BE, Jaffe ES, Travis LB. Second cancer incidence and cause-specific mortality among 3104 patients with hairy cell leukemia: a population-based study. J Natl Cancer Inst. 2007;99:215–22.

    Article  PubMed  Google Scholar 

  95. Cornet E, Tomowiak C, Tanguy-Schmidt A, Lepretre S, Dupuis J, Feugier P, et al. Long-term follow-up and second malignancies in 487 patients with hairy cell leukaemia. Br J Haematol. 2014;166:390–400.

    Article  CAS  PubMed  Google Scholar 

  96. Steven B, Collins J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987;5:3311197.

    Google Scholar 

  97. Look AT, Look AT. Oncogenic transcription factors in the human acute leukemias. Science (80-). 1997;278:1059–64.

    Google Scholar 

  98. Crane MM, Keating MJ, Trujillo JM, Labarthe DR, Frankowski RF. Environmental exposures in cytogenetically defined subsets of acute nonlymphocytic leukemia. JAMA. 1989;262:634–9.

    Article  CAS  PubMed  Google Scholar 

  99. Stagnaro E, Ramazzotti V, Crosignani P, Fontana A, Masala G, Miligi L, et al. Smoking and hematolymphopoietic malignancies. Cancer Causes Control. 2001;12:325–34.

    Article  CAS  PubMed  Google Scholar 

  100. Ahlbom A. A review of the epidemiologic literature about magnetic field and cancer. Scand J Work Environ Heal. 1988;14:337–43.

    Article  CAS  Google Scholar 

  101. Goldstein BD. Benzene as a cause of lymphoproliferative disorders. Chem Biol Interact. 2010;184:147–50.

    Article  CAS  PubMed  Google Scholar 

  102. Wong O, Raabe GK. Critical review of cancer epidemiology in petroleum industry employees, with a quantitative meta-analysis by cancer site. Am J Ind Med. 1989;15:283–310.

    Article  CAS  PubMed  Google Scholar 

  103. Bloom GE, Warner S, Gerald PS, Diamond LK. Chromosome abnormalities in constitutional aplastic anemia. N Engl J Med. 1966;274:8–14.

    Article  CAS  PubMed  Google Scholar 

  104. Head DR. Revised classification of acute myeloid leukemia. Leukemia. 1996;10:1826–31.

    CAS  PubMed  Google Scholar 

  105. Fey MF, Buske C. Acute myeloblastic leukaemias in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi138–43.

    Article  PubMed  Google Scholar 

  106. Kibbelaar RE, Mulder JW, Dreef EJ, van Kamp H, Fibbe WE, Wessels JW, et al. Detection of monosomy 7 and trisomy 8 in myeloid neoplasia: a comparison of banding and fluorescence in situ hybridization. Blood. 1993;82:904–13.

    CAS  PubMed  Google Scholar 

  107. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J, et al. Prognostic significance of NPM1 mutations in acute myeloid leukemia: a meta-analysis. Mol Clin Oncol. 2014;2:275–81.

    PubMed  Google Scholar 

  109. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001;20:7186–203.

    Article  CAS  PubMed  Google Scholar 

  110. Bitter MA, Neilly ME, Le Beau MM, Pearson MG, Rowley JD. Rearrangements of chromosome 3 involving bands 3q21 and 3q26 are associated with normal or elevated platelet counts in acute nonlymphocytic leukemia. Blood. 1985;66:1362–70.

    CAS  PubMed  Google Scholar 

  111. Secker-Walker LM, Mehta A, Bain B. Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom Cancer Cytogenetic Group study. Br J Haematol. 1995;91:490–501.

    Article  CAS  PubMed  Google Scholar 

  112. Pearson M, Vardiman J, Le Beau M, Rowley J, Schwartz S, Kerman S, et al. Increased numbers of marrow basophils may be associated with a t(6;9) in ANLL. Am J Hematol. 1985;18:393–403.

    Article  CAS  PubMed  Google Scholar 

  113. Soupir CP, Vergilio JA, Dal Cin P, Muzikansky A, Kantarjian H, Jones D, et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol. 2007;127:642–50.

    Article  PubMed  Google Scholar 

  114. Keung Y, Beaty M, Powell BL, Molnar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leuk Res. 2004;28:579–86.

    Article  CAS  PubMed  Google Scholar 

  115. Paietta E, Racevskis J, Bennett JM, Neuberg D, Cassileth PA, Rowe JM, et al. Biologic heterogeneity in Philadelphia chromosome-positive acute leukemia with myeloid morphology: the Eastern Cooperative Oncology Group experience. Leukemia. 1998;12:1881–5.

    Article  CAS  PubMed  Google Scholar 

  116. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.

    Article  CAS  PubMed  Google Scholar 

  117. Andersen M, Larson R, Mauritzson N, Schnittger S, Jhanwar S, Pedersen-Bjergaard J. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosom Cancer. 2002;33:395–400.

    Article  PubMed  Google Scholar 

  118. Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR, et al. 11Q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosom. 2002;33:362–78.

    Article  Google Scholar 

  119. Rowley J, Olney H. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia : overview report. Genes Chromosom Cancer. 2002;33:331–45.

    Article  PubMed  Google Scholar 

  120. Slovak ML, Bedell V, Popplewell L, Arber DA, Schoch C, Slater R. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosom Cancer. 2002;33:379–94.

    Article  PubMed  Google Scholar 

  121. Pileri SA, Ascani S, Cox MC, Campidelli C, Bacci F, Piccioli M, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21:340–50.

    Article  CAS  PubMed  Google Scholar 

  122. Gurbuxani S, Vyas P, Crispino JD. Recent insights into the mechanisms of myeloid leukemogenesis in down syndrome. Blood. 2004;103:399–406.

    Article  CAS  PubMed  Google Scholar 

  123. Massey GV, Zipursky A, Chang MN, Doyle JJ, Nasim S, Taub JW, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood. 2006;107:4606–13.

    Article  CAS  PubMed  Google Scholar 

  124. Brink DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoiesis) of down syndrome. Adv Anat Pathol. 2006;13:256–62.

    Article  PubMed  Google Scholar 

  125. Greene ME, Mundschau G, Wechsler J, McDevitt M, Gamis A, Karp J, et al. Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of down syndrome. Blood Cells Mol Dis. 2003;31:351–6.

    Article  CAS  PubMed  Google Scholar 

  126. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5:919–23.

    Article  CAS  PubMed  Google Scholar 

  127. Chaperot L, Bendriss N, Manches O, et al. Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood. 2001;97:3210–7.

    Article  CAS  PubMed  Google Scholar 

  128. Petrella T, Comeau MR, Maynadie M, Couillault G, De Muret A, Maliszewski CR, et al. “Agranular CD4+ CD56+ hematodermic neoplasm” (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. Am J Surg Pathol. 2002;26:852–62.

    Article  PubMed  Google Scholar 

  129. Pilichowska ME, Fleming MD, Pinkus JL, Pinkus GS. CD4+/CD56+ hematodermic neoplasm (“blastic natural killer cell lymphoma”): neoplastic cells express the immature dendritic cell marker BDCA-2 and produce interferon. Am J Clin Pathol. 2007;128:445–53.

    Article  CAS  PubMed  Google Scholar 

  130. Yildirim I, Uckan D, Cetin M, Tuncer M, Tezcan I. Isolated testicular and bone relapse in children with acute myeloblastic leukemia and chronic graft versus host disease after allogeneic BMT. Turk J Pediatr. 2007;49:206–9.

    PubMed  Google Scholar 

  131. Aschoff P, Hantschel M, Oksuz M, Werner MK, Lichy M, Vogel W, et al. Integrated FDG-PET/CT for detection, therapy monitoring and follow-up of granulocytic sarcoma: initial results. NuklearMedizin. 2009;48:185–91.

    CAS  PubMed  Google Scholar 

  132. Buck AK, Bommer M, Juweid ME, Glatting G, Stilgenbauer S, Mottaghy FM, et al. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J Nucl Med. 2008;49:1756–62.

    Article  PubMed  Google Scholar 

  133. Vanderhoek M, Juckett MB, Perlman SB, Nickles RJ, Jeraj R. Early assessment of treatment response in patients with AML using [18F]FLT PET imaging. Leuk Res. 2011;35:310–6.

    Article  PubMed  Google Scholar 

  134. Lee SM, Kim TS, Lee JW, Kwon HW, Kim II Y, Kang SH, et al. Incidental finding of an 11C-acetate PET-positive multiple myeloma. Ann Nucl Med. 2010;24:41–4.

    Article  PubMed  Google Scholar 

  135. Abramson S, Miller RG, Phillips RA. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977;145:1567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bizzozero OJ, Johnson KG, Ciocco A, Kawasaki S, Toyoda S. Radiation-related leukemia in Hiroshima and Nagasaki 1946-1964. I. Distribution, incidence and appearance time. N Engl J Med. 1966;274:1095–101.

    Article  PubMed  Google Scholar 

  137. Galbraith P, Abu-Zahra H. Granulopoiesis in chronic granulocytic leukaemia. Br J Haematol. 1972;22:135–43.

    Article  CAS  PubMed  Google Scholar 

  138. Quintás-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113:1619–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Soverini S, De Benedittis C, Machova Polakova K, Linhartova J, Castagnetti F, Gugliotta G, et al. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients. Oncotarget. 2016;7:21982.

    PubMed  PubMed Central  Google Scholar 

  140. Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370:342–50.

    Article  CAS  PubMed  Google Scholar 

  141. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1018–29.

    Article  CAS  PubMed  Google Scholar 

  142. Apperley JF. Part II: management of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1116–28.

    Article  CAS  PubMed  Google Scholar 

  143. Soverini S, De Benedittis C, Mancini M, Martinelli G. Mutations in the BCR-ABL1 Kinase domain and elsewhere in chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015;15:S120–8.

    Article  PubMed  Google Scholar 

  144. Deininger MW, Hodgson JG, Shah NP, Cortes JE, Kim DW, Nicolini FE, et al. Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients. Blood. 2016;127:703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Baccarani M, Pileri S, Steegmann J, Muller M, Soverini S, Dreyling M, et al. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:vii72–7.

    Article  PubMed  Google Scholar 

  146. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eide CA, O’Hare T. Chronic myeloid leukemia: advances in understanding disease biology and mechanisms of resistance to tyrosine kinase inhibitors. Curr Hematol Malig Rep. 2015;10:158–66.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Castro-Malaspina H, Moore MA. Pathophysiological mechanisms operating in the development of myelofibrosis: role of megakaryocytes. Nouv Rev Fr Hematol. 1982;24:221–6.

    CAS  PubMed  Google Scholar 

  149. Karanas A, Silver R. Characteristics of the terminal phase of chronic granulocytic leukemia. Blood. 1968;32:445–59.

    CAS  PubMed  Google Scholar 

  150. Nakajo M, Jinnouchi S, Inoue H, Otsuka M, Matsumoto T, Kukita T, et al. FDG PET findings of chronic myeloid leukemia in the chronic phase before and after treatment. Clin Nucl Med. 2007;32:775–8.

    Article  PubMed  Google Scholar 

  151. Takalkar A, Yu J, Kumar R, Xiu Y, Alavi A, Zhuang H. Diffuse bone marrow accumulation of FDG in a patient with chronic myeloid leukemia mimics hematopoietic cytokine-mediated FDG uptake on positron emission tomography. Clin Nucl Med. 2004;29:637–9.

    Article  PubMed  Google Scholar 

  152. Chen C, Zimmerman R, Faro S, Bilaniu L, Chou T, Molloy P. Childhood leukemia: central nervous system abnormalities during and after treatment. AJNR Am J Neuroradiol. 1996;17:295–310.

    CAS  PubMed  Google Scholar 

  153. Lu L, Jiang L, Guan H, Gao Y, Lu H. Imaging proliferation in human leukemia-tumor bearing mice with 18F-FLT: comparison with 18F-FDG PET. Hell J Nucl Med. 2012;15:15–6.

    Google Scholar 

  154. Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63:789–99.

    CAS  PubMed  Google Scholar 

  155. Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing committee for the collaborative CML prognostic factors project group. J Natl Cancer Inst. 1998;90:850–8.

    Article  CAS  PubMed  Google Scholar 

  156. Hasford J, Baccarani M, Hoffmann V, Guihot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression- free survival in 2060 patients with CML on imatinib treatment : the EUTOS PubMed Commons. Blood. 2011;118:686–92.

    Article  CAS  PubMed  Google Scholar 

  157. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  CAS  PubMed  Google Scholar 

  158. Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32:424–30.

    Article  CAS  PubMed  Google Scholar 

  159. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;9–10.

    Google Scholar 

  160. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim D-W, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54.

    Google Scholar 

  161. Potenza L, Luppi M, Riva G, Morselli M, Ferrari A, Imovilli A, et al. Isolated extramedullary relapse after autologous bone marrow transplantation for acute myeloid leukemia: case report and review of the literature. Am J Hematol. 2006;81:45–50.

    Article  PubMed  Google Scholar 

  162. Benitez Velazco A, Gonzalez Garcia FM, Albala Gonzalez MD, Pacheco Capote C, Latre Romero JM. Bone scintigraphy with 99mTc-MDP in a patient with acute lymphoblastic leukemia initially diagnosed of Still’s disease. Rev Esp Med Nucl. 2005;24:319–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Anna Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sollini, M., Galimberti, S., Boni, R., Erba, P.A. (2016). Diagnostic Applications of Nuclear Medicine: Leukemias. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Leukemias
    Published:
    22 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_39-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Leukemias
    Published:
    29 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_39-1