Skip to main content

Mass Extinctions and Supernova Explosions

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increa s ed exposure to the Sun’s ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth’s temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth’s history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208:1095

    Article  ADS  Google Scholar 

  • Ammon K, Masarik J, and Leya I (2008) Noble gases in Grant and Carbo and the influence of S- and P-rich mineral inclusions on the 41K-40K dating system. Meteoritics Planet Sci 43(4):685–699

    Article  ADS  Google Scholar 

  • Baade W and Zwicky F (1934) Remarks on Super-Novae and cosmic rays. Phys Rev 46:76

    Article  ADS  Google Scholar 

  • Beech M (2012) The past, present and future supernova threat to Earth’s biosphere. Astrophys Space Sci 336:287–302 (2011)

    Google Scholar 

  • Breitschwerdt D, de Avillez MA, Feige J and Dettbarn C (2012) Interstellar medium simulations. Astron Nachr 333(5–6):486–496

    Article  ADS  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    Article  ADS  Google Scholar 

  • Cloud 2015 publications concerning the CLOUD experiment can be found at (Nov 2015) http://cloud.web.cern.ch/content/publications

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320

    Article  ADS  Google Scholar 

  • Crutzen PJ and Brühl C (1996) Mass extinctions and supernova explosions. Proc Natl Acad Sci USA 93:1582–1584. Astronomy

    Google Scholar 

  • Dorfi EA (1990) Evolution of supernova remnants including particle acceleration. Astron Astrophys 234:419

    ADS  Google Scholar 

  • Dragicevich PM, Blair DG, Burmann RR (1999) Why are supernovae in our galaxy so frequent? Mon Not R Astron Soc 302:693

    Article  ADS  Google Scholar 

  • Ellis J and Schramm DN (1995) Could a nearby supernova explosion have caused mass extinction? Proc Natl Acad Sci USA 92:235–238

    Article  ADS  Google Scholar 

  • Ellis J, Fields B, Schramm DN (1996) Geological isotope anomalies as signatures of nearby supernovae. Astrophys J 470:1227

    Article  ADS  Google Scholar 

  • Gehrels N, Laird CM, Jackman CH, Cannizo JK, Mattson BJ, Chen W (2003) Ozone Depletion from Nearby Supernovae. Astrophys J 585:1169–1176

    Article  ADS  Google Scholar 

  • Hess VF (1912) Über Beobachtungen zur durchdringenden Strahlung bei sieben Freiballonfahrten. Physik Zeitschr XIII:1084

    Google Scholar 

  • Kahn FD (1976) The temperature in very old supernova remnants. Astron Astrophys J 50:145

    ADS  Google Scholar 

  • Knie K, Korschinek G, Faestermann T, Dorfi EA, Rugel G, Wallner A (2004) Indication for supernova produced 60Fe activity on Earth. P R L 93(17):171103–1

    Article  Google Scholar 

  • Large RR, Halpin JA, Lounejeva E, Danyushevsky LV, Maslennikov VV, Gregory D, et al (2015) Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Res 28:1282–1293

    Article  Google Scholar 

  • Martin O,Galante D, Cardenas R, Horvath JE (2009) Short-term effects of gamma ray bursts on Earth. Astrophys Space Sci 312:161–167

    Article  ADS  Google Scholar 

  • Melott AL, Lieberman B, Laird C, Martin L, Medvedev M, Thomas BC et al (2003) arxiv.org/pdf/astro-ph/0309415.pdf

    Google Scholar 

  • Ney EP (1959) Cosmic Radiation and the Weather. Nature 183:451

    Article  ADS  Google Scholar 

  • Parthasarathy M, Branch D, Jeffery DJ, Baron E (2007) Progenitors of type Ia supernovae: binary stars with white dwarf companions New Astron Rev 51:524–538

    Google Scholar 

  • Raup DM and Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  ADS  Google Scholar 

  • Rohde RA and Muller RA (2005) Cycles in fossil diversity. Nature 434(7030):208–210

    Article  ADS  Google Scholar 

  • Rudermann MA (1975) Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 184:1079

    Article  ADS  Google Scholar 

  • Schindewolf OH (1954) NeuesJahrb. Geol Paleontol Monatsh 1954:451

    Google Scholar 

  • Sepkoski JA (2002) Compendium of Fossil Marine Animal Genera (eds. Jablonski D & Foote, M.) Bull Am Paleontol 363 Paleontological Research Institution, Ithaca

    Google Scholar 

  • Shaviv NJ (2002) Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climate connection. P R L 89(5):051102–1

    Article  Google Scholar 

  • Smith RC (1972) In: Barrington AE (ed) Proceedings of survey conference of climatic impact assessment program. Department of Transportation, Washington, DC, p 243

    Google Scholar 

  • Svensmark H (1998) Influence of Cosmic Rays on Earth’s Climate.P R L 81:5027

    Google Scholar 

  • Svensmark H, Calder N (2007) The chilling stars. A new theory of climate change. Icon Books Ltd, Cambridge

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1995) Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. J Atmos Terr Phys 57:835

    Article  ADS  Google Scholar 

  • Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Experimental Evidence for the Role of Ions in Particle Nucleation under Atmospheric. Proc R Soc A 463:385–396

    Article  ADS  Google Scholar 

  • Terry KD, Tucker WH (1968) Biologic effects of Supernovae. Science 159:421

    Article  ADS  Google Scholar 

  • Thomas BC, Jackman CH, Melott AL, Laird CM, Stolarski RS, Gehrels N et al (2005a) Terrestrial ozone depletion due to a milky way gamma-ray burst. Astrophys J Lett 622:L153

    Article  ADS  Google Scholar 

  • Thomas BC, Melott AL, Jackman CH, Laird CM, Medvedev MV, Stolarski RS et al (2005b) Gamma-ray bursts and the Earth: exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophys J 634:509

    Article  ADS  Google Scholar 

  • Thorsett SE (1995) Terrestrial implications of cosmological gamma-ray burst model. Astrophys J 444:L53-L55

    Article  ADS  Google Scholar 

  • Twitchett RJ (2006) The paleoclimatology, paleoecology and paleoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232(2–4):190–213

    Article  Google Scholar 

  • VivesiBatlle J (2012) Dual-age-class population model to assess radiation dose effects on non-human biota populations. Radiat Environ Biophys 51:225–243

    Article  Google Scholar 

  • Williams DM, Pollard D (2003) Extraordinary climates of Earth-like planets: three-dimensional climate simulations at extreme obliquity. Int J Astrobiol 2:1–19

    Article  Google Scholar 

  • Wulfscher Strahlungsapparat (2015) www.landesmuseum.at/pdf_frei_remote/SVVNWK_59_0023-0055.pdf

Download references

Acknowledgements

The critical comments of Dr. P. Ludwig on this manuscript are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Korschinek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Korschinek, G. (2016). Mass Extinctions and Supernova Explosions. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics