Skip to main content

Close Binary Stellar Evolution and Supernovae

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Types II, IIb, Ib, and Ic supernovae are widely considered as the end of the evolution of massive stars. These are thought as due to a unique mechanism: core collapse and subsequent explosion. However, from a photometrical and spectroscopical point of view, these events are very different. Type II events are plenty of hydrogen, IIb have little, whereas Ib do not show it but are dominated by helium. Even more extreme is the case of Ic events that do not show any hydrogen or helium. Today it is considered that most of massive stars belong to binary systems close enough to make the components of the pair to be forced to undergo mass exchange during their lives. Evidently, the evolution of massive binaries is fundamental for interpreting available observations quantitatively. Here we review the theory of the evolution of massive binaries playing special attention to its physical basis and main differences from the far easier problem of single stellar evolution. Then, we discuss its application to the case of some recent supernovae (SNe) thought to be due to binary progenitors: SN 1993J and SN 2011dh. With the presently available models, it is possible to account for the variety of types II, IIb, and even Ib supernovae as due to mass transfer and/or loss from the systems. However, it seems difficult to explain the processes that lead type Ic progenitors to lose all their helium prior to explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott BP, 1012 colleagues (2016a) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Google Scholar 

  • Abbott BP, Abbott R, Abbott TD et al (2016b) Directional limits on persistent gravitational waves from advanced LIGO’s first observing run. Phys Rev Lett 116:241103

    Article  ADS  Google Scholar 

  • Almeida LA, 17 colleagues (2015) Discovery of the massive overcontact binary VFTS352: evidence for enhanced internal mixing. Astron J 812:102

    Google Scholar 

  • Benvenuto OG, De Vito MA (2003) A code for stellar binary evolution and its application to the formation of helium white dwarfs. Mon Not R Astron Soc 342:50–60

    Article  ADS  Google Scholar 

  • Benvenuto OG, Bersten MC, Nomoto K (2013) A binary progenitor for the Type IIb supernova 2011dh in M51. Astrophys J 762:74

    Article  ADS  Google Scholar 

  • Bersten MC, Benvenuto OG, Nomoto K et al (2012) The Type IIb supernova 2011dh from a supergiant progenitor. Astrophys J 757:31

    Article  ADS  Google Scholar 

  • Bhattacharya D, van den Heuvel EPJ (1991) Formation and evolution of binary and millisecond radio pulsars. PhR 203:1

    ADS  Google Scholar 

  • Brandt N, Podsiadlowski P (1995) The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries. MNRAS 274:461

    Article  ADS  Google Scholar 

  • Caughlan GR, Fowler WA (1988) Thermonuclear reaction rates V. At. Data Nucl Data Tables 40:283

    Article  ADS  Google Scholar 

  • Christy RF (1967) Computational methods in stellar pulsation. Methods Comput Phys 7:191–218

    Article  ADS  Google Scholar 

  • Clayton DD (1968) Principles of stellar evolution and nucleosynthesis. McGraw-Hill, New York

    Google Scholar 

  • de Jager C, Nieuwenhuijzen H, van der Hucht KA (1988) Mass loss rates in the Hertzsprung-Russell diagram. Astron Astrophys Suppl Ser 72:259–289

    ADS  Google Scholar 

  • Eggleton PP (1983) Approximations to the radii of Roche lobes. Astrophys J 268:368

    Article  ADS  Google Scholar 

  • Ferguson JW, Alexander DR, Allard F, Barman T, Bodnarik JG, Hauschildt PH, Heffner-Wong A, Tamanai A (2005) Low-temperature opacities. Astrophys J 623:585–596

    Article  ADS  Google Scholar 

  • Folatelli G, Bersten MC, Benvenuto OG, Van Dyk SD, Kuncarayakti H, Maeda K, Nozawa T, Nomoto K, Hamuy M, Quimby RM (2014) A blue point source at the location of supernova 2011dh. Astrophys J 793:L22

    Article  ADS  Google Scholar 

  • Henyey LG, Wilets L, Böhm KH, Lelevier R, Levee RD (1959) A method for automatic computation of stellar evolution. Astrophys J 129:628

    Article  ADS  MathSciNet  Google Scholar 

  • Iben I, Livio M (1993) Common envelopes in binary star evolution. PASP 105:1373

    Article  ADS  Google Scholar 

  • Iglesias CA, Rogers FJ (1996) Updated opal opacities. Astrophys J 464:943

    Article  ADS  Google Scholar 

  • Itoh N, Hayashi H, Nishikawa A, Kohyama Y (1996) Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes. Astrophys J Suppl Ser 102:411

    Google Scholar 

  • Ivanova N, 18 colleagues (2013) Common envelope evolution: where we stand and how we can move forward. Astron Astrophys Rev 21:59

    Google Scholar 

  • Kippenhahn R, Weigert A (1967) Entwicklung in engen doppelsternsystemen I. Massenaustausch vor und nach beendigung des zentralen wasserstoff-brennens. Z Astrophys 65:251

    Google Scholar 

  • Kippenhahn R, Weigert A (1994) Stellar structure and evolution, XVI, vol 468. Astronomy and astrophysics library. Springer, Heidelberg/Berlin/New York, p 192

    Google Scholar 

  • Kippenhahn R, Weigert A, Hofmeister E (1967) Methods for calculating stellar evolution. Methods Comput Phys 7:129–190

    ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1971) The classical theory of fields. Course of theoretical physics – pergamon international library of science, technology, engineering and social studies, 3rd revised english edition. Pergamon Press, Oxford

    Google Scholar 

  • Langer N, El Eid MF, Fricke KJ (1985) Evolution of massive stars with semiconvective diffusion. Astron Astrophys 145:179–191

    ADS  Google Scholar 

  • Maeder A, Meynet G (2000) The evolution of rotating stars. Annu Rev Astron Astrophys 38:143–190

    Article  ADS  Google Scholar 

  • Maeder A, Meynet G, Lagarde N, Charbonnel C (2013) The thermohaline, Richardson, Rayleigh-Taylor, Solberg-Høiland, and GSF criteria in rotating stars. Astron Astrophys 553:A1

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ, Kudritzki RP, Podsiadlowski P, Gilmore GF (2004) The massive binary companion star to the progenitor of supernova 1993J. Nature 427:129–131

    Article  ADS  Google Scholar 

  • McCuskey SW (1963) Introduction to celestial mechanics. Addison-Wesley Publishing Co., Reading

    MATH  Google Scholar 

  • Nelemans G, Verbunt F, Yungelson LR, Portegies Zwart SF (2000) Reconstructing the evolution of double helium white dwarfs: envelope loss without spiral-in. A&A 360:1011

    ADS  Google Scholar 

  • Neo S, Miyaji S, Nomoto K, Sugimoto D (1977) Effect of rapid mass accretion onto the main-sequence stars. Publ Astron Soc Jpn 29:249–262

    ADS  Google Scholar 

  • Packet W (1981) On the spin-up of the mass accreting component in a close binary system. Astron Astrophys 102:17–19

    ADS  Google Scholar 

  • Paczyński B (1976) Common envelope binaries. Struct Evol Close Binary Syst 73:75

    Article  Google Scholar 

  • Paczyński B (1971) Evolutionary processes in close binary systems. Ann Rev Astron Astrophys 9:183

    Article  ADS  Google Scholar 

  • Podsiadlowski P, Joss PC (1989) An alternative binary model for SN1987A. Nature 338:401–403

    Article  ADS  Google Scholar 

  • Podsiadlowski P, Rappaport S, Pfahl ED (2002) Evolutionary sequences for low- and intermediate-mass X-Ray binaries. Astrophys J 565:1107–1133

    Article  ADS  Google Scholar 

  • Podsiadlowski P, Rappaport S, Han Z (2003) On the formation and evolution of black hole binaries. MNRAS 341:385

    Article  ADS  Google Scholar 

  • Pols OR, Dewi JDM (2002) Helium-star mass loss and its implications for black hole formation and supernova progenitors. PASA 19:233

    Article  ADS  Google Scholar 

  • Ritter H (1988) Turning on and off mass transfer in cataclysmic binaries. Astron Astrophys 202:93–100

    ADS  Google Scholar 

  • Ruderman M, Shaham J, Tavani M (1989) Accretion turnoff and rapid evaporation of very light secondaries in low-mass X-ray binaries. ApJ 336:507

    Article  ADS  Google Scholar 

  • Sana H, de Mink SE, de Koter A et al (2012) Binary interaction dominates the evolution of massive stars. Science 337:444

    Article  ADS  Google Scholar 

  • Stancliffe RJ, Eldridge JJ (2009) Modelling the binary progenitor of Supernova 1993J. Mon Not R Astron Soc 396:1699–1708

    Article  ADS  Google Scholar 

  • Taam RE, Sandquist EL (2000) Common envelope evolution of massive binary stars. ARA&A 38:113

    Article  ADS  Google Scholar 

  • Thorne KS, Zytkow AN (1975) Red giants and supergiants with degenerate neutron cores. ApjL 199:L19

    Article  ADS  Google Scholar 

  • Timmes FX (1999) Integration of nuclear reaction networks for stellar hydrodynamics. Astrophys J Suppl Ser 124:241–263

    Article  ADS  Google Scholar 

  • van den Heuvel EPJ (1976) In: Eggleton P, Mitton S, Whelan J (eds) Structure and evolution of close binary systems. IAU symposium, vol 73. Reidel, Dordrecht, p 35

    Book  Google Scholar 

  • Van Dyk SD, 14 colleagues (2011) The progenitor of supernova 2011dh/PTF11eon in Messier 51. Astrophys J 741:L28

    Google Scholar 

  • Verbunt F, Zwaan C (1981) Magnetic braking in low-mass X-ray binaries. Astron Astrophys 100:L7–L9

    ADS  Google Scholar 

  • Wellstein S, Langer N (1999) Implications of massive close binaries for black hole formation and supernovae. A&A 350:148

    ADS  Google Scholar 

  • Woosley SE, Langer N, Weaver TA (1995) The presupernova evolution and explosion of helium stars that experience mass loss. ApJ 448:315

    Article  ADS  Google Scholar 

  • Yoon S-C, Woosley SE, Langer N (2010) Type Ib/c supernovae in binary systems. I. Evolution and properties of the progenitor stars. Astrophys J 725:940–954

    Article  ADS  Google Scholar 

  • Zahn J-P (1992) Circulation and turbulence in rotating stars. Astron Astrophys 265:115–132

    ADS  Google Scholar 

  • Zahn J-P (1977) Tidal friction in close binary stars. Astron Astrophys 57:383–394

    ADS  Google Scholar 

Download references

Acknowledgements

O.G.B. wants to thank Professor Ken’ichi Nomoto for very motivating collaboration on the topic of this article and for calling his attention to the problem of rotation in stellar evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar G. Benvenuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Benvenuto, O.G., Bersten, M.C. (2017). Close Binary Stellar Evolution and Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics