Skip to main content

Antimony and Nickel

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Critical Care Toxicology
  • 469 Accesses

Abstract

Antimony (stibium [Sb]) is a brittle, crystalline, silver-white metalloid naturally present in the Earth’s crust and found at low levels throughout the environment. At least 114 different ores have been identified [1]. Stibnite (SbS3) is the predominant ore; the others are mostly oxides.

This chapter was adapted from “Antimony and Nickel” by Javier Waksman and Scott D. Phillips in: Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient, first edition. Brent J, Wallace KL, Burkhart KK, Phillips SD, Donovan JW, editors. Philadelphia: Mosby; 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McCallum RI. Occupational exposure to antimony compounds. J Environ Monit. 2005;7:1245–50.

    Article  CAS  PubMed  Google Scholar 

  2. Browning E. Antimony. In: Toxicity of industrial metals. 2nd ed. London: Butterworth & Co; 1969. p. 23–8.

    Google Scholar 

  3. Ming-Hsin H, Shao-Chi C, Ju-Sun P, et al. Mechanism and treatment of cardiac arrhythmias in tartar emetic intoxication. Chin Med J. 1958;76:103–15.

    Google Scholar 

  4. Herwaldt BL, Berman JD. Recommendations for treating leishmaniasis with sodium stibogluconate (pentosam) and review or pertinent studies. Am J Trop Med Hyg. 1992;46:296–306.

    CAS  PubMed  Google Scholar 

  5. Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, Sinha PK, Rijal S, Mondal D, Zilberstein D, Alvar J. Visceral leishmaniasis: elimination with existing infectious diseases. Lancet Infect Dis. 2011;11:322–5.

    Article  PubMed  Google Scholar 

  6. Balana-Fouce R, Reguera RM, Cubria JC, Ordonez D. The pharmacology of leishmaniasis. Gen Pharmacol. 1998;30:435–43.

    Article  CAS  PubMed  Google Scholar 

  7. Sundar S, Chakravarty J. Antimony toxicity. Int J Environ Res Public Health. 2010;7:4267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. U.S Bureau of Mines. Antimony in the first quarter of 1989, Mineral industry series. Pittsburgh: U.S Bureau of Mines; 1989.

    Google Scholar 

  9. Herbst KA, Rose G, Hanusch K. Antimony and antimony compounds. In: Arpe HJ, editor. Ullman’s encyclopedia of industrial chemistry, vol. A3. 5th ed. Hoboken: Wiley; 1985. p. 55–76.

    Google Scholar 

  10. Leonard A, Gerber GB. Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutat Res. 1996;366:1–8.

    Article  PubMed  Google Scholar 

  11. De Boeck M, Kirsch-Volders M, Lison D. Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res. 2003;533:135–52.

    Article  PubMed  CAS  Google Scholar 

  12. Anonymous. Toxicological profile for antimony. US Agency for Toxic Substances and Disease Registry, Atlanta; 1992. http://www.atsdr.cdc.gov/ToxProfiles/tp23.pdf. Last Accessed 20 Apr 2015.

  13. Iyengar GV, Tanner JT, Wolf WR, Zeisler R. Preparation of a mixed human diet material for the determination of nutrient elements, selected toxic elements and organic nutrients: a preliminary report. Sci Total Environ. 1987;61:235–52.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas RG, Felicetti SW, Lucchino RV, McClellan RO. Retention patterns of antimony in mice following inhalation of particles formed at different temperatures. Proc Exp Biol Med. 1973;144:544–50.

    Article  CAS  Google Scholar 

  15. Felicetti SW, Thomas RG, McClellan RO. Retention of inhaled antimony-124 in the Beagle dog as a function of temperature of aerosol formation. Health Phys. 1974;26:525–31.

    Article  CAS  Google Scholar 

  16. Felicetti SA, Thomas RG, McClellan RO. Metabolism of two valence states on inhaled antimony in hamster. Am Ind Hyg Assoc J. 1974;35:292–300.

    Article  CAS  PubMed  Google Scholar 

  17. International Commission on Radiological Protection. Limits of intakes of radionuclides by workers: metabolic data for antimony. Annals of the ICRP. ICRP publication 30, part 3, 1981.

    Google Scholar 

  18. Djuric D, Thomas RG, Lie R. The distribution and excretion of trivalent antimony in the rat following inhalation. Arch Gewerbepatch Gewerbehyg. 1962;19:529–45.

    Article  CAS  Google Scholar 

  19. Sunagawa S. Experimental studies on antimony poisoning. Igaku Kenkyu. 1981;51:129–42.

    CAS  PubMed  Google Scholar 

  20. Chulay JD, Fleckenstein L, Smith DH. Pharmacokinetics of antimony during treatment of visceral leishmaniasis with sodium stibogluconate or meglumine antimoniate. Trans R Soc Trop Med Hyg. 1988;82:69–72.

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin LG. The toxicity and trypanocidal activity of some organic antimonial. J Pharmacol. 1944;81:224.

    CAS  Google Scholar 

  22. Page JE. A study of the excretion of organic antimonials. Biochem J. 1943;37:198.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferreira Cdos S, Martins PS, Demicheli C, Brochu C, Ouellette M, Frezard F. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals. 2003;16:441–6.

    Article  PubMed  Google Scholar 

  25. Frezard F, Demicheli C, Ferreira CS, Costa MA. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother. 2001;45:913–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadvav R. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004;279:37445–51.

    Article  CAS  PubMed  Google Scholar 

  27. Gebel T. Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact. 1997;107:131–44.

    Article  CAS  PubMed  Google Scholar 

  28. Friedrich K, Vieira FA, Porrozzi R, Marchevsky RS, Miekeley N, Grimaldi Jr G, Paumgartten FJR. Disposition of antimony in rhesus monkeys infected with leishmaniasis braziliensis and treated with meglumine antimoniate. J Toxicol Environ Health. 2012;75:63–75.

    Article  CAS  Google Scholar 

  29. Bailly R, Lauwerys R, Buchet JP, Mahieu P, Konings J. Experimental and human studies on antimony metabolism: their relevance for the biological monitoring of workers exposed to inorganic antimony. Br J Ind Med. 1991;48:93–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rees PH, Keating MI, Kager PA, Hockmeyer WT. Renal clearance of pentavalent antimony (sodium stibogluconate). Lancet. 1980;2:226–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kentner M, Leinemann M, Schaller KH, Weltle D, Lehnert G. External and internal antimony exposure in starter battery production. Int Arch Occup Environ Health. 1995;67:119–23.

    Article  CAS  PubMed  Google Scholar 

  32. Norseth T, Martinsen I. Biological monitoring of antimony. In: Clarkson TW, Friberg L, Nordberg G, Sager P, editors. Biological monitoring of toxic Metals. New York: Plenum Press; 1988.

    Google Scholar 

  33. Venugopal B, Luckey TD. Antimony. In: Metal toxicity in mammals. New York: Plenum Press; 1978. p. 213–6.

    Google Scholar 

  34. Kuryshev YA, Wang L, Wible BA, Wan X, Ficker E. Antimony-based antileishmanial compounds prolong the cardiac action potential by an increase in cardiac calcium currents. Mol Pharmacol. 2006;69:1216–25.

    Article  CAS  PubMed  Google Scholar 

  35. Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S. Mechanism of action of arsenic trioxide. Cancer Res. 2002;62:3893–903.

    CAS  PubMed  Google Scholar 

  36. Van-Voorhis WC. Therapy and prophylaxis of systemic protozoan infections. Drugs. 1990;40:176–202.

    Article  CAS  PubMed  Google Scholar 

  37. Tirmenstein MA, Plews PI, Walker CV, Woolery MD, Wey HE, Toraason MA. Antimony-induced oxidative stress and toxicity in cultured cardiac myocytes. Toxicol Appl Pharmacol. 1995;130:41–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mann KK, Davison K, Colombo M, Colosimo AL, Diaz Z, Padovani AMS, Guo Q, Scrivens J, Gao W, Mader S, Miller Jr WH. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling. Toxicol Lett. 2006;160:158–70.

    Article  CAS  PubMed  Google Scholar 

  39. Losler S, Schlief S, Kneifel C, Thiel E, Schrezenmeier H, Rojewski MT. Antimony-trioxide- and arsenic-trioxide-induced apoptosis in myelogenic and lymphatic cell lines, recruitment of caspases, and loss of mitochondrial membrane potential are enhanced by modulators of the cellular glutathione redox system. Ann Hematol. 2009;88:1047–58.

    Article  PubMed  CAS  Google Scholar 

  40. Lauwers LF, Roelants A, Roseel PM, et al. Oral antimony intoxication in man. Crit Care Med. 1990;18:324–6.

    Article  CAS  PubMed  Google Scholar 

  41. Cooper RG, Harrison AP. The exposure to and health effects of antimony. Ind J Occup Environ Med. 2009;13:3–10.

    Article  Google Scholar 

  42. Dunn JT. A curious case of antimony poisoning. Analyst. 1928;531:532–3.

    Google Scholar 

  43. Brieger H, Semisch 3rd CW, Stasney J, Piatnek DA. Industrial antimony poisoning. Ind Med Surg. 1954;23:521–3.

    CAS  PubMed  Google Scholar 

  44. Renes LE. Antimony poisoning in industry. Arch Ind Hyg. 1953;7:99–108.

    CAS  Google Scholar 

  45. Cooper DA, Pendergrass EP, Vorvald AJ, Mayock RL, Brieger H. Pneumoconiosis among workers in an antimony industry. Am J Roentgenol Radium Therapy Nucl Med. 1968;103:495–508.

    Article  Google Scholar 

  46. Potkonjak V, Pavlovich M. Antimoniosis: a particular form of pneumoconiosis. I. Etiology, clinical and X-Rray findings. Int Arch Occup Environ Health. 1983;51:199–207.

    Article  CAS  PubMed  Google Scholar 

  47. Cooper DA, Pendergrass EP, Vorwald AJ. Pneumoconiosis among workers in an antimony industry. Am J Roentgenol Radium Therapy Nucl Med. 1968;103:495–508.

    Article  Google Scholar 

  48. Gerhardson L, Brune D, Nordberg CF, Webster CO. Antimony in the lung, liver, and kidney tissue from deceased smelter workers. Scand J Environ Health. 1982;8:201–9.

    Article  Google Scholar 

  49. McCallum RI, Day MJ, Underhill J, Aird EGA. Measurement of antimony oxide dust in human lungs in vivo by x-ray spectrometry. In: Walton WH, editor. Inhaled particles. Oxford: Urwin Brothers Limited, The Gresham Press, Old Working; 1971. p. 611–8.

    Google Scholar 

  50. Stevenson CJ. Antimony spots. Trans St Johns Hosp Dermatol Soc. 1965;51:40–2.

    CAS  PubMed  Google Scholar 

  51. White Jr GP, Mathias CG, Davin JS. Dermatitis in workers exposed to antimony in a melting process. J Occup Med. 1993;35:392–5.

    PubMed  Google Scholar 

  52. Oliviera LF, Schubach AO, Martins MM, Passos SL, Oliviera RV, Marzochi MC, Andrade CA. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the new world. Acta Trop. 2011;118:87–96.

    Article  CAS  Google Scholar 

  53. Romera GA, Flores MRM, Noronha EF, Macedo VO. High frequency of skin reactions in patients with leishmaniasis treated with meglumine antimoniate contaminated with heavy metals: a comparative approach using historical controls. Mem Inst Oswaldo Cruz. 2003;98:145–9.

    Article  Google Scholar 

  54. Chulay JD, Spencer HC, Mugambi M. Electrocardiographic changes during treatment of leishmaniasis with pentavalent antimony (sodium stibogluconate). Am J Trop Med Hyg. 1985;34:702–9.

    CAS  PubMed  Google Scholar 

  55. Aronson NE, Wortmann GW, Johnson SC, et al. Safety and efficacy of intravenous sodium stibogluconate in the treatment of leishmaniasis: recent U.S military experience. Clin Infect Dis. 1988;27:1457–64.

    Article  Google Scholar 

  56. Franke ED, Wignall S, Cruz ME, et al. Efficacy and toxicity of sodium stibogluconate for mucosal leishmaniasis. Ann Intern Med. 1990;113:934–40.

    Article  CAS  PubMed  Google Scholar 

  57. Bryceson ADM, Chula YJD, Mugambi JD, et al. Visceral leishmaniasis unresponsive to antimonial drugs: II. Response to high dosage sodium stibogluconate or prolonged treatment with pentamidine. Trans R Soc Trop Med Hyg. 1985;79:705–14.

    Article  CAS  PubMed  Google Scholar 

  58. Sundar S, Sinha PR, Agrawal NK, Srivastava R, Rainey PM, Berman JD, Murray HW, Singh VP. A cluster of cases of severe cardiotoxicity among Kala-Azar patients treated with a high-osmolarity lot of sodium antimony gluconate. Am J Trop Med Hyg. 1998;59:139–43.

    CAS  PubMed  Google Scholar 

  59. Rijal S, Chappuis F, Singh R, Boelaert M, Loutan L, Koirala S. Sodium stibogluconate cardiotoxicity and the safety of generics. Trans R Soc Trop Med Hyg. 2003;97:597–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lawn SD, Armstrong M, Chilton D, Whitty CJM. Electrocardiographic and biochemical adverse effects of sodium stibogluconate during treatment of cutaneous and mucosal leishmaniasis among returned travellers. Trans R Soc Trop Med Hyg. 2006;100:264–9.

    Article  PubMed  Google Scholar 

  61. Aronson NE, Wortmann GW, Johnson SC, Jackson JE, Benson PM, Beard JS, Tally JD, Gambel JM, Kreutzer RD, Oster CN. Safety and efficacy of intravenous sodium stibogluconate in the treatment of leishmaniasis: recent US military experience. Clin Infect Dis. 1998;27:1457–64.

    Article  CAS  PubMed  Google Scholar 

  62. Gasser Jr RA, Magill AJ, Oster CN, Franke ED, Grogl M, Berman JD. Pancreatitis induced by pentavalent antimonial agents during treatment of leishmaniasis. Clin Infect Dis. 1994;18:83–90.

    Article  PubMed  Google Scholar 

  63. Saenz RE, Rodriguez CG, Johnson CM, Berman JD. Efficacy and toxicity of pentosam against Panamanian mucosal leishmaniasis. Am J Trop Med Hyg. 1991;44:394–8.

    CAS  PubMed  Google Scholar 

  64. Delgado J, Macias J, Pineda JA, et al. High frequency of serious side effects from meglumine antimoniate given without an upper limit dose for the treatment of visceral leishmaniasis in human immunodeficiency virus type-1–infected patients. Am J Trop Med Hyg. 1999;61:766–9.

    CAS  PubMed  Google Scholar 

  65. Sharma S, Malhan P, Pujani M, Rath B. Acute erythroid toxicity in visceral leishmaniasis: a rare complication of antimonial therapy. Indian J Pathol Micriobiol. 2008;51:546–7.

    Article  Google Scholar 

  66. Wise ES, Armstrong MS, Watson J, Lockwood DN. Monitoring toxicity associated with parenteral sodium stibogluconate in the day-case management of returned travellers with new world cutaneous leishmaniasis. PLoS Negl Trop Dis. 2012;6:e1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hepburn NC, Tidman MJ, Hunter JA. Cutaneous leishmaniasis in British troops from Belize. Br J Dermatol. 1993;128:63–8.

    Article  CAS  PubMed  Google Scholar 

  68. Bregoli L, Chiarini F, Gambarelli A, Sighinolfi G, Gatti AM, Santi P, Martelli AM, Cocco L. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology. 2009;262:121–9.

    Article  CAS  PubMed  Google Scholar 

  69. Horber FF, Lerut J, Jaeger PH. Renal tubular acidosis, a side effect of treatment with pentavalent antimony. Clin Nephrol. 1991;36:213.

    CAS  PubMed  Google Scholar 

  70. Rodrigues ML, Costa RS, Souza CS, Foss NT, Roselino AM. Nephrotoxicity attributed to meglumine antimoniate (Glucantime) in the treatment of generalized cutaneous leishmaniasis. Rev Inst Med Trop Sao Paulo. 1999;41:33–7.

    Article  CAS  PubMed  Google Scholar 

  71. Scope A, Trau H, Anders G, Barzilai A, Confino Y, Schwartz E. Experience with new world cutaneous leishmaniasis in travelers. J Am Acad Dermatol. 2003;49:672–8.

    Article  PubMed  Google Scholar 

  72. Tarabar A, Khan Y, Nelson LS, Hoffman RS. Antimony toxicity from the use of Tartar Emetic for the treatment of alcohol abuse. Vet Hum Toxicol. 2004;46:331–3.

    PubMed  Google Scholar 

  73. Ludersdorf R, Fuchs A, Mayer P. Biological assessment of exposure to antimony and lead in the glass-producing industry. Int Arch Occup Environ Health. 1987;59:469–74.

    Article  CAS  PubMed  Google Scholar 

  74. Friberg L. Handbook on the toxicology of metals. Amsterdam: Elsevier/North Holland Biomedical Press; 1979.

    Google Scholar 

  75. Kawamoto M, Durgam S, Eisenberg J. Pseudo-outbreak of antimony toxicity in firefighters – Florida, 2009. Morb Mortal Wkly Rep. 2009;58:1300–2.

    Google Scholar 

  76. De Perio MA, Durgam S, Caldwell KL, Eisenberg J. A health hazard evaluation of antimony exposure in fire fighters. J Occup Environ Med. 2010;52:81–4.

    Article  PubMed  Google Scholar 

  77. American Academy of Clinical Toxicology, European Association of Poisons Centres and Clinical Toxicologists. Position paper: single-dose activate charcoal. Clin Toxicol. 2005;43:61–87.

    Article  Google Scholar 

  78. Buchanan JA, Eberhardt A, Tebb ZD, et al. Massive human ingestion of orpiment (Arsenic trisulfide). J Emerg Med. 2013;44:367–72.

    Article  PubMed  Google Scholar 

  79. Macias Konstantopoulos W, Burns Ewald M, Pratt DS. A 34-year old man with intractable vomiting after ingestion of an unknown substance. Case records of the Massachusetts General Hospital. Case 22–2012. N Engl J Med. 2012;367:259–68.

    Article  PubMed  CAS  Google Scholar 

  80. Braun HA, Lusky LM, Calvery HO. The efficacy of 2,3-dimercaptopropanol (BAL) in the therapy of poisoning by compounds of antimony, bismuth, chromium, mercury and nickel. J Pharmacol Exp Ther. 1946;87(Suppl):119–25.

    CAS  PubMed  Google Scholar 

  81. Eagle H, Germuth FG, Magnuson HJ, Fleischman R. The protective action of BAL in experimental antimony poisoning. J Pharmacol Exp Ther. 1947;89:196–204.

    CAS  PubMed  Google Scholar 

  82. Stevenson DS, Suarez RM, Marchand EJ. The use of BAL in heavy metal poisoning with particular reference to antimonial intoxication. PR J Public Health Trop Med. 1948;23:535–53.

    Google Scholar 

  83. Basinger MA, Jones MM. Structural requirements for chelate antidotal efficacy in acute antimony (III) intoxication. Res Commun Chem Pathol Pharmacol. 1981;32:355–63.

    CAS  PubMed  Google Scholar 

  84. Reymond JM, Desmeules J. Sodium stibogluconate (pentostam) overdose in a patient with acquired immunodeficiency syndrome. Ther Drug Monit. 1998;20:714–6.

    Article  CAS  PubMed  Google Scholar 

  85. Richardson BA. Cot mattress biodeterioration and SIDS. Lancet. 1990;335:670.

    Article  CAS  PubMed  Google Scholar 

  86. Jenkins RO, Craig PJ, Goessler W, Irgolic KJ. Biovolatilization of antimony and sudden infant death syndrome (SIDS). Hum Exp Toxicol. 1998;17:231–8.

    Article  CAS  PubMed  Google Scholar 

  87. Cullen A, Kiberd B, Devaney D, Gillan J, Kelehan P, Matthews TG, Mayne P, Murphy N, O’Regan M, Shannon W, Thornton L. Concentrations of antimony in infants dying from SIDS and infants dying from other causes. Arch Dis Child. 2000;82:244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Price NH, Yates WG, Allen SD. Toxicity evaluation for establishing IDLH values. PB87–229498. Cincinnati: National Institute for Occupational Safety and Health; 1979.

    Google Scholar 

  89. Parish GG, Glass R, Kimbrough R. Acute arsine poisoning in two workers cleaning a clogged drain. Arch Environ Health. 1979;34:224–7.

    Article  CAS  PubMed  Google Scholar 

  90. Potter WT, Garry VE, Kelly JT, Tarone R, Griffith J, Nelson RL. Radiometric assay of red cell and plasma cholinesterase in pesticide appliers from minnesota. Toxicol Appl Pharmacol. 1993;119:150–5.

    Article  CAS  PubMed  Google Scholar 

  91. Hussain SA, Jane DE, Taberner PV. Lack of inhibition of human plasma cholinesterase and red cell acetylcholinesterase by antimony compounds including stibine. Hum Exp Toxicol. 1998;17:140–3.

    Article  CAS  PubMed  Google Scholar 

  92. Hesdorffer CS, Milne FJ, Terblanche J, Meyers AM. Arsine gas poisoning: the importance of exchange transfusions in severe cases. Br J Ind Med. 1986;43:353–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Duke JM. Nickel in rocks and ores. In: Nriagu JO, editor. Nickel in the environment. New York: Wiley; 1980. p. 27–50.

    Google Scholar 

  94. Warner JS. Occupation exposure to airborne nickel in producing and using primary nickel products. In: Sunderman Jr FW, Aitio A, Berlin A, editors. Nickel in the human environment, IARC scientific publication, vol. 53. Lyon: International Agency for Research on Cancer; 1984. p. 419–37.

    Google Scholar 

  95. Hawley GG. Condensed chemical dictionary. 10th ed. New York: Van Nostrand Reinhold; 1981. p. 724–5.

    Google Scholar 

  96. Sunderman Jr FW, Oskarsson A. Nickel. In: Merian E, editor. Metals and their compounds in the environment. New York: VCH Verlagsgesellschaft; 1991. p. 1101–26.

    Google Scholar 

  97. Windholz M. The Merck Index. 10th ed. Rahway: Merck & Co; 1983. pp. 932–933, 1171.

    Google Scholar 

  98. Tien JK, Howson TE. Nickel and nickel alloys. In: Grayson M, Eckroth D, editors. Kirk-Othmer encyclopedia of chemical technology, vol. 15. 3rd ed. New York: Wiley; 1981. p. 787–801.

    Google Scholar 

  99. ATSDR. Toxicological profile for Nickel. Report TP-92/14. Atlanta: U.S. Public Health Service, Agency for Toxic Substances and Disease Registry; 1997.

    Google Scholar 

  100. Friberg L, Nordberg GF, Kessler E, et al., editors. Handbook of the toxicology of metals. 2nd ed. Amsterdam: Elsevier Science; 1986.

    Google Scholar 

  101. Sunderman FW. A pilgrimage into the archives of nickel toxicology. Ann Clin Lab Sci. 1989;19:1–16.

    CAS  PubMed  Google Scholar 

  102. Webster JD, Parker TF, Alfrey AC, et al. Acute nickel intoxication by dialysis. Ann Intern Med. 1980;92:631–3.

    Article  CAS  PubMed  Google Scholar 

  103. National Academy of Sciences Committee on Medical and Biological Effects of Environmental Pollutants. Nickel. Washington, DC: National Academy of Sciences; 1975.

    Google Scholar 

  104. Sunderman FW, Kincaid JF. Nickel poisoning: II. Studies on patients suffering from acute exposure to vapors of nickel carbonyl. JAMA. 1954;155:889–90.

    Article  CAS  Google Scholar 

  105. Vuopala U, Huhti E, Takkunen J, et al. Nickel carbonyl poisoning: report of 25 cases. Ann Clin Res. 1970;2:214–22.

    CAS  PubMed  Google Scholar 

  106. Baselt RC. Disposition of toxic drugs and chemicals in man. 6th ed. Foster City: Chemical Toxicology Institute; 2002.

    Google Scholar 

  107. National Library of Medicine. HSDB: Hazardous Substances Data Bank. Bethesda: National Institutes of Health/National Library of Medicine; 2002.

    Google Scholar 

  108. Yoshihara D, Fujiwara N, Ookawara T, Kato S, Sakiyama H, Yokoe S, Eguchi H, Suzuki K. Protective role of glutathione S-Transferase A4 induced in copper/zinc-superoxide dismutase mice. Free Radic Biol Med. 2009;47:559–67.

    Article  CAS  PubMed  Google Scholar 

  109. Bai YN, Ma L, Wang QY, Pu HQ, Zhang XP, Wu XJ, Xuan XQ, Cheng N. The mechanism of acute lung injury induced by nickel carbonyl in rats. Biomed Environ Sci. 2013;26:625–8.

    PubMed  Google Scholar 

  110. Wang Y, Dai S. Structural basis of metal hypersensitivity. Immunol Res. 2013;55:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McConnell LH, Fink JN, Schlueter DP, Schmidt Jr MG. Asthma caused by nickel sensitivity. Ann Intern Med. 1973;78:888–90.

    Article  CAS  PubMed  Google Scholar 

  112. Goyer RA. Toxic effects of metals. In: Amdur MO, Doull J, Klaassen C, editors. Casarett and Doull’s toxicology: the basic science of poisons. 4th ed. New York: Pergamon Press; 1991. p. 651–2.

    Google Scholar 

  113. Kunimasa K, Arita M, Tachibana H, Tsubouchi K, Konishi S, Korogi Y, Nishyama A, Ishida T. Chemical pneumonitis and acute lung injury caused by inhalation of nickel fumes. Intern Med. 2011;50:2035–8.

    Article  PubMed  Google Scholar 

  114. Greenberg MI, Vearrier D. Metal fume fever and polymer fume fever. Clin Toxicol. 2015;53:195–203.

    Article  CAS  Google Scholar 

  115. Denays R, Kumba C, Lison D, De Bels D. First epileptic seizure induced by occupational nickel poisoning. Epilepsia. 2005;46:961–2.

    Article  PubMed  Google Scholar 

  116. Sunderman FW, Nickel KJF, Poisoning II. Studies on patients suffering from acute exposure to vapors of nickel carbonyl. J Am Med Assoc. 1954;155:889–94.

    Article  CAS  PubMed  Google Scholar 

  117. Jones CC. Nickel carbonyl poisoning: report of a fatal case. Arch Environ Health. 1973;26:245–8.

    Article  CAS  PubMed  Google Scholar 

  118. Sunderman FW. Use of sodium diethyldithiocarbamate in the treatment of nickel carbonyl poisoning. Ann Clin Lab Sci. 1990;20:12–21.

    CAS  PubMed  Google Scholar 

  119. Kurta DL, Dean BS, Krenzelok EP. Acute nickel carbonyl poisoning. Am J Emerg Med. 1993;11:64–6.

    Article  CAS  PubMed  Google Scholar 

  120. Zhi-Cheng S. Acute nickel carbonyl poisoning: a report of 179 cases. Br J Ind Med. 1986;43:422–4.

    Google Scholar 

  121. Seet RCS, Johan A, Teo CES, Gan SL, Lee KH. Inhalational nickel carbonyl poisoning in waste processing workers. Chest. 2005;128:424–9.

    Article  CAS  PubMed  Google Scholar 

  122. Bradberry SM, Vale JA. Therapeutic review: do diethyldithiocarbamate and disulfiram have a role in acute nickel carbonyl poisoning? Clin Toxicol. 1999;37:259–64.

    CAS  Google Scholar 

  123. West B, Sunderman FW. Nickel poisoning: VII. The therapeutic effectiveness of alkyl dithiocarbamates in experimental animals exposed to nickel carbonyl. Am J Med Sci. 1958;236:15–25.

    Article  CAS  PubMed  Google Scholar 

  124. Basalt RC, Hanson VW. Efficacy of orally-administered chelating agents for nickel carbonyl toxicity in rats. Res Commun Chem Pathol Pharmacol. 1982;38:113–24.

    Google Scholar 

  125. Sunderman FW. Efficacy of sodium diethyldithiocarbamate (Dithiocarb) in acute nickel carbonyl poisoning. Ann Clin Lab Sci. 1979;9:1–10.

    CAS  PubMed  Google Scholar 

  126. Curtis JA, Haggert DA. Nickel. In: Nelson LS, Hoffman RS, Lewin NA, et al., editors. Goldfrank’s toxicologic emergencies. 9th ed. New York: McGraw Hill Medical; 2011.

    Google Scholar 

  127. Freedman LD, Doak GO, Long GG. Antimony compounds. In: Kirk-Othmer encyclopedia of chemical technology. vol. 3, 3rd ed. New York, NY: John Wiley and Sons, Inc; 1978. p. 105–28.

    Google Scholar 

  128. HSDB. Hazardous Substances Data Bank. National Library of Medicine, National Toxicology Information Program, Bethesda; 1989.

    Google Scholar 

  129. Sax NI. Dangerous properties of industrial materials. 6th ed. New York: Van Nostrand Reinhold; 1984.

    Google Scholar 

  130. Ishimatsu S, Kawamoto T, Matsuno K, et al. Distribution of various nickel compounds in rat organs after oral administration. Biol Trace Elem Res. 1995;49(1):43–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Sztajnkrycer .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sztajnkrycer, M.D. (2016). Antimony and Nickel. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_46-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_46-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Antimony and Nickel
    Published:
    01 September 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_46-2

  2. Original

    Antimony and Nickel
    Published:
    29 March 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_46-1