Skip to main content

Hill-Based Muscle Modeling

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

The Hill muscle model consists mainly of a contractile component (CC) in series with an elastic component (SEC) and is used widely in biomechanics and human movement science to actuate musculoskeletal models in simulations of human movement. This chapter summarizes the main features of Hill-based muscle models, including detailed treatments of the SEC force-extension relationship and the CC activation dynamics, force-length relationship, and force-velocity relationship. Additional model elements including CC pennation, parallel elasticity, history dependence, and metabolic energy expenditure are covered in brief. A contemporary summary of parameter values needed to implement muscle-specific models when creating models of the lower limb is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    Article  Google Scholar 

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud 1:115–123

    Google Scholar 

  • An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106:280–282

    Article  Google Scholar 

  • Anderson DE, Madigan ML, Nussbaum MA (2007) Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech 40:3105–3113

    Article  Google Scholar 

  • Bahler AS (1968) Modeling of mammalian skeletal muscle. IEEE Trans Biomed Eng 15:249–257

    Article  Google Scholar 

  • Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A, Heller MO, Kutzner I (2014) Standardized loads acting in knee implants. PLoS One 9:e86035

    Article  Google Scholar 

  • Bertram JEA (2005) Constrained optimization in human walking: cost minimization and gait plasticity. J Exp Biol 208:979–991

    Article  Google Scholar 

  • Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: estimation of muscle forces and joint moments from measurements of neural command. J Appl Biomech 20:367–395

    Article  Google Scholar 

  • Caldwell GE (1995) Tendon elasticity and relative length: effects on the Hill two-component muscle model. J Appl Biomech 11:1–24

    Article  Google Scholar 

  • Chow JW, Darling WG (1999) The maximum shortening velocity of muscle should be scaled with activation. J Appl Physiol 86:1025–1031

    Article  Google Scholar 

  • Clarkson PM, Kroll W, McBride TC (1980) Maximal isometric strength and fiber type composition in power and endurance athletes. Eur J Appl Physiol 44:35–42

    Article  Google Scholar 

  • Cole GK, van den Bogert AJ, Herzog W, Gerritsen KGM (1996) Modelling of force production in skeletal muscle undergoing stretch. J Biomech 29:1091–1104

    Article  Google Scholar 

  • Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37:757–767

    Article  Google Scholar 

  • Dick TJ, Biewener AA, Wakeling JM (2017) Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images. J Exp Biol. https://doi.org/10.1242/jeb.154807

  • Edwards WB, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR (2009) Effects of stride length and running mileage on a probabilistic stress fracture model. Med Sci Sports Exerc 41:2177–2184

    Article  Google Scholar 

  • Forcinito M, Epstein M, Herzog W (1998) Can a rheological muscle model predict force depression/enhancement? J Biomech 31:1093–1099

    Article  Google Scholar 

  • Fuglevand AJ, Winder DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    Article  Google Scholar 

  • Gordon AM, Huxley AL, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    Article  Google Scholar 

  • Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cybern 97:63–79

    Article  MATH  Google Scholar 

  • Hasson CJ, Caldwell GE (2012) Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles. Ann Biomed Eng 40:1088–1101

    Article  Google Scholar 

  • Hatze H (1976) The complete optimization of a human motion. Math Biosci 28:99–135

    Article  MathSciNet  MATH  Google Scholar 

  • Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25:103–119

    Article  MATH  Google Scholar 

  • Hatze H (1981) Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. Eur J Appl Physiol 46:325–338

    Article  Google Scholar 

  • He JP, Levine WS, Loeb GE (1991) Feedback gains for correcting small perturbations to standing posture. IEEE Trans Autom Control 36:322–332

    Article  MATH  Google Scholar 

  • Herzog W (2004) History dependence of skeletal muscle force production: implications for movement control. Hum Mov Sci 23:591–604

    Article  Google Scholar 

  • Herzog W, Powers K, Johnston K, Duvall M (2015) A new paradigm for muscle contraction. Front Physiol 6:174

    Article  Google Scholar 

  • Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL (2015) Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng 137:020905

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126:136–195

    Article  Google Scholar 

  • Hill AV (1950) The series elastic component of muscle. Proc R Soc Lond B Biol Sci 137:273–280

    Article  Google Scholar 

  • Hill TL (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle: part I. Prog Biophys Mol Biol 28:267–340

    Article  Google Scholar 

  • Huijing PA (1996) Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. Eur J Morphol 34:47–54

    Article  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    Google Scholar 

  • Katz B (1939) The relation between force and speed in muscular contraction. J Physiol 96:45–64

    Article  Google Scholar 

  • Lee SSM, Arnold AS, de Boef MM, Biewener AA, Wakeling JM (2013) Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models. J Biomech 46:2288–2295

    Article  Google Scholar 

  • Lichtwark GA, Wilson AM (2007) Is Achilles tendon compliance optimised for maximum muscle efficiency in locomotion? J Biomech 40:1768–1775

    Article  Google Scholar 

  • Lieber RL, Loren GJ, Fridén J (1994) In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol 71:874–881

    Article  Google Scholar 

  • Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776

    Article  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man. J Physiol 510:977–985

    Article  Google Scholar 

  • McGowan CP, Neptune RR, Herzog W (2013) A phenomenological muscle model to assess history dependent effects in human movement. J Biomech 46:151–157

    Article  Google Scholar 

  • McLean SG, Su A, van den Bogert AJ (2003) Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J Biomech Eng 125:864–874

    Article  Google Scholar 

  • Miller RH (2014) A comparison of muscle energy models for simulating human walking in three dimensions. J Biomech 47:1373–1381

    Article  Google Scholar 

  • Miller RH (2016) Summary of muscle parameters for Hill-based muscle modeling in the human lower limb. bioRxiv:090944. https://doi.org/10.1101/0909044

  • Minetti AE, Alexander RM (1997) A theory of metabolic costs for bipedal gaits. J Theor Biol 186:467–476

    Article  Google Scholar 

  • Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Article  Google Scholar 

  • Pandy MG (1999) Moment arm of a muscle force. Exerc Sport Sci Rev 27:79–118

    Article  Google Scholar 

  • Parkkola R, Alanen A, Kalimo H, Lillsunde I, Komu M, Kormano M (1993) MR relaxation times and fiber type predominance of the psoas and multifidus muscle: an autopsy study. Acta Radiol 34:16–19

    Article  Google Scholar 

  • Riener R, Edrich T (1999) Identification of passive elastic joint moments in the lower extremities. J Biomech 32:539–544

    Article  Google Scholar 

  • Sacks RS, Roy RR (1982) Architecture of the hindlimb muscles of the cat: functional significance. J Morphol 173:185–195

    Article  Google Scholar 

  • Scott SH, Engstrom CM, Loeb GE (1993) Morphometry of human thigh muscles: determination of fascicle architecture by magnetic resonance imaging. J Anat 182:249–257

    Google Scholar 

  • Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816

    Google Scholar 

  • Scovil CY, Ronsky JL (2006) Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech 39:2055–2063

    Article  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98:133–143

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan M (2009) Optimal speeds for walking and running, and walking on a moving walkway. Chaos 19:026112

    Article  MathSciNet  MATH  Google Scholar 

  • Trotter JA (1990) Interfiber tension transmission in series-fibered muscles of the cat hindlimb. J Morphol 206:351–361

    Article  Google Scholar 

  • Umberger BR, Gerritsen KGM, Martin PE (2003) A model of human muscle energy expenditure. Comput Methods Biomech Biomed Engin 6:99–111

    Article  Google Scholar 

  • Van den Bogert AJ, Blana D, Heinrich D (2011) Implicit methods for efficient musculoskeletal simulation and optimal control. Procedia IUTAM 2:297–316

    Article  Google Scholar 

  • Van den Bogert AJ, Gerritsen KGM, Cole GK (1998) Human muscle modelling from a user’s perspective. J Electromyogr Kinesiol 8:119–124

    Article  Google Scholar 

  • Van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69:195–204

    Article  Google Scholar 

  • Walker SM, Schroedt GR (1974) I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec 178:63–81

    Article  Google Scholar 

  • Winters JM, Stark L (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 32:826–839

    Article  Google Scholar 

  • Woittiez RD, Huijing PA, Rozendal RH (1983) Influence of muscle architecture on the length-force diagram of mammalian muscle. Eur J Appl Physiol 399:275–279

    Article  Google Scholar 

  • Zahalak GI (1981) A distribution-moment approximation for kinetic theories of muscular contraction. Math Biosci 55:89–114

    Article  MATH  Google Scholar 

  • Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross H. Miller .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miller, R.H. (2018). Hill-Based Muscle Modeling. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_203

Download citation

Publish with us

Policies and ethics