Skip to main content

Assessing Toxicity of Nanoparticles: In Vitro and In Vivo Assays

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Nanoparticles are widely utilized in the fields of medicine and industry. Accordingly, it is vital to deliberately assess the toxicity of nanoparticles in the development of nanoparticle-related products and therapeutic agents. This chapter reviews in vitro and in vivo procedures for the assessment of the toxicity of nanoparticles. As the first step, various in vitro and in vivo procedures are listed and discussed with suggestions from various researchers. Furthermore, we discuss the issues regarding the determination of toxicity assays for the evaluation of the toxicity of nanoparticles. Especially, these assays are valuable tools to investigate the differential effects of nanoparticles of various sizes and different surface modification. We expect that this chapter can be a stepping stone for further discussion about the toxicity of nanoparticles and will help researchers to evaluate the toxicity of nanoparticles efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. A.P. Popov, J. Lademann, A.V. Priezzhev, R. Myllyla, Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J. Biomed. Opt. 10(6), 064037 (2005). doi:10.1117/1.2138017

    Article  Google Scholar 

  2. G.J. Nohynek, E.K. Dufour, M.S. Roberts, Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol. 21(3), 136–149 (2008). doi:10.1159/000131078

    Article  Google Scholar 

  3. D.H. Jo, J.H. Kim, T.G. Lee, J.H. Kim, Nanoparticles in the treatment of angiogenesis-related blindness. J. Ocul. Pharmacol. Ther. 29(2), 135–142 (2013). doi:10.1089/jop.2012.0113

    Article  Google Scholar 

  4. D.H. Jo, J.H. Kim, Y.S. Yu, T.G. Lee, J.H. Kim, Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine 8(5), 784–791 (2012). doi:10.1016/j.nano.2011.09.003

    Article  Google Scholar 

  5. C.K. Kim, T. Kim, I.Y. Choi, M. Soh, D. Kim, Y.J. Kim, H. Jang, H.S. Yang, J.Y. Kim, H.K. Park, S.P. Park, S. Park, T. Yu, B.W. Yoon, S.H. Lee, T. Hyeon, Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 51(44), 11039–11043 (2012). doi:10.1002/anie.201203780

    Article  Google Scholar 

  6. J.H. Kim, M.H. Kim, D.H. Jo, Y.S. Yu, T.G. Lee, J.H. Kim, The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 32(7), 1865–1871 (2011). doi:10.1016/j.biomaterials.2010.11.030

    Article  Google Scholar 

  7. X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One 6(2), e16733 (2011). doi:10.1371/journal.pone.0016733

    Article  Google Scholar 

  8. A.J. Koivisto, J. Lyyranen, A. Auvinen, E. Vanhala, K. Hameri, T. Tuomi, J. Jokiniemi, Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal. Toxicol. 24(12), 839–849 (2012). doi:10.3109/08958378.2012.724474

    Article  Google Scholar 

  9. J.F. Borzelleca, Paracelsus: herald of modern toxicology. Toxicol. Sci. 53(1), 2–4 (2000). doi:10.1093/toxsci/53.1.2

    Article  Google Scholar 

  10. A. Elsaesser, C.V. Howard, Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64(2), 129–137 (2012). doi:10.1016/j.addr.2011.09.001

    Article  Google Scholar 

  11. P. Hennebert, A. Avellan, J. Yan, O. Aguerre-Chariol, Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag. (2013). doi:10.1016/j.wasman.2013.04.014

    Google Scholar 

  12. S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem./SETAC 27(9), 1825–1851 (2008)

    Article  Google Scholar 

  13. Z. Liu, M. Jiang, T. Kang, D. Miao, G. Gu, Q. Song, L. Yao, Q. Hu, Y. Tu, Z. Pang, H. Chen, X. Jiang, X. Gao, J. Chen, Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34(15), 3870–3881 (2013). doi:10.1016/j.biomaterials.2013.02.003

    Article  Google Scholar 

  14. J. Wang, C. Chen, Y. Liu, F. Jiao, W. Li, F. Lao, Y. Li, B. Li, C. Ge, G. Zhou, Y. Gao, Y. Zhao, Z. Chai, Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 183(1–3), 72–80 (2008). doi:10.1016/j.toxlet.2008.10.001

    Article  Google Scholar 

  15. J.H. Kim, J.H. Kim, K.W. Kim, M.H. Kim, Y.S. Yu, Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20(50), 505101 (2009). doi:10.1088/0957-4484/20/50/505101

    Article  Google Scholar 

  16. S. Mullick Chowdhury, G. Lalwani, K. Zhang, J.Y. Yang, K. Neville, B. Sitharaman, Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1), 283–293 (2013). doi:10.1016/j.biomaterials.2012.09.057

    Article  Google Scholar 

  17. R.R. Arvizo, S. Saha, E. Wang, J.D. Robertson, R. Bhattacharya, P. Mukherjee, Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc. Natl. Acad. Sci. U. S. A. 110(17), 6700–6705 (2013). doi:10.1073/pnas.1214547110

    Article  Google Scholar 

  18. S.A. Love, M.A. Maurer-Jones, J.W. Thompson, Y.S. Lin, C.L. Haynes, Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 5, 181–205 (2012). doi:10.1146/annurev-anchem-062011-143134

    Article  Google Scholar 

  19. B.J. Marquis, S.A. Love, K.L. Braun, C.L. Haynes, Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009). doi:10.1039/b818082b

    Article  Google Scholar 

  20. W. Strober, Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3:Appendix 3B (2001). doi:10.1002/0471142735.ima03bs21

    Google Scholar 

  21. W.A. Dengler, J. Schulte, D.P. Berger, R. Mertelsmann, H.H. Fiebig, Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 6(4), 522–532 (1995)

    Article  Google Scholar 

  22. A.R. Lupu, T. Popescu, The noncellular reduction of MTT tetrazolium salt by TiO nanoparticles and its implications for cytotoxicity assays. Toxicol. In Vitro (2013). doi:10.1016/j.tiv.2013.03.006

    Google Scholar 

  23. A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 86(7), 1123–1136 (2012). doi:10.1007/s00204-012-0837-z

    Article  Google Scholar 

  24. A.L. Holder, R. Goth-Goldstein, D. Lucas, C.P. Koshland, Particle-induced artifacts in the MTT and LDH viability assays. Chem. Res. Toxicol. 25(9), 1885–1892 (2012). doi:10.1021/tx3001708

    Article  Google Scholar 

  25. S. Wang, H. Yu, J.K. Wickliffe, Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol. In Vitro 25(8), 2147–2151 (2011). doi:10.1016/j.tiv.2011.07.007

    Article  Google Scholar 

  26. H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J.I. Zink, A.E. Nel, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349–4368 (2012). doi:10.1021/nn3010087

    Article  Google Scholar 

  27. A. Jaeger, D.G. Weiss, L. Jonas, R. Kriehuber, Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296(1–3), 27–36 (2012). doi:10.1016/j.tox.2012.02.016

    Article  Google Scholar 

  28. N. Yin, Q. Liu, J. Liu, B. He, L. Cui, Z. Li, Z. Yun, G. Qu, S. Liu, Q. Zhou, G. Jiang, Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small (2013). doi:10.1002/smll.201202732

    Google Scholar 

  29. V. Stone, H. Johnston, R.P. Schins, Development of in vitro systems for nanotoxicology: methodological considerations. Crit. Rev. Toxicol. 39(7), 613–626 (2009). doi:10.1080/10408440903120975

    Article  Google Scholar 

  30. E. Kahn, M. Baarine, S. Pelloux, J.M. Riedinger, F. Frouin, Y. Tourneur, G. Lizard, Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells. Int. J. Nanomedicine 5, 185–195 (2010)

    Article  Google Scholar 

  31. L. Xu, X. Li, T. Takemura, N. Hanagata, G. Wu, L.L. Chou, Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J. Nanobiotechnology 10, 16 (2012). doi:10.1186/1477-3155-10-16

    Article  Google Scholar 

  32. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25–29 (2000). doi:10.1038/75556

    Article  Google Scholar 

  33. W. da Huang, B.T. Sherman, R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009). doi:10.1093/nar/gkn923

    Article  Google Scholar 

  34. W. da Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009). doi:10.1038/nprot.2008.211

    Article  Google Scholar 

  35. P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer, Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012). doi:10.1038/nnano.2012.168

    Article  Google Scholar 

  36. X. Zheng, J. Tian, L. Weng, L. Wu, Q. Jin, J. Zhao, L. Wang, Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip. Nanotechnology 23(5), 055102 (2012). doi:10.1088/0957-4484/23/5/055102

    Article  Google Scholar 

  37. S.K. Mahto, T.H. Yoon, S.W. Rhee, A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4(3) (2010). doi:10.1063/1.3486610

    Google Scholar 

  38. D. Kim, Y.S. Lin, C.L. Haynes, On-chip evaluation of shear stress effect on cytotoxicity of mesoporous silica nanoparticles. Anal. Chem. 83(22), 8377–8382 (2011). doi:10.1021/ac202115a

    Article  Google Scholar 

  39. S.C. Landis, S.G. Amara, K. Asadullah, C.P. Austin, R. Blumenstein, E.W. Bradley, R.G. Crystal, R.B. Darnell, R.J. Ferrante, H. Fillit, R. Finkelstein, M. Fisher, H.E. Gendelman, R.M. Golub, J.L. Goudreau, R.A. Gross, A.K. Gubitz, S.E. Hesterlee, D.W. Howells, J. Huguenard, K. Kelner, W. Koroshetz, D. Krainc, S.E. Lazic, M.S. Levine, M.R. Macleod, J.M. McCall, R.T. Moxley 3rd, K. Narasimhan, L.J. Noble, S. Perrin, J.D. Porter, O. Steward, E. Unger, U. Utz, S.D. Silberberg, A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419), 187–191 (2012). doi:10.1038/nature11556

    Article  Google Scholar 

  40. G. Oberdorster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267(1), 89–105 (2010). doi:10.1111/j.1365-2796.2009.02187.x

    Article  Google Scholar 

  41. P. Rivera Gil, G. Oberdorster, A. Elder, V. Puntes, W.J. Parak, Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4(10), 5527–5531 (2010). doi:10.1021/nn1025687

    Article  Google Scholar 

  42. J.H. Kim, J.A. Park, S.W. Lee, W.J. Kim, Y.S. Yu, K.W. Kim, Blood-neural barrier: intercellular communication at glio-vascular interface. J. Biochem. Mol. Biol. 39(4), 339–345 (2006)

    Article  Google Scholar 

  43. C. Fu, T. Liu, L. Li, H. Liu, D. Chen, F. Tang, The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10), 2565–2575 (2013). doi:10.1016/j.biomaterials.2012.12.043

    Article  Google Scholar 

  44. X.D. Zhang, D. Wu, X. Shen, P.X. Liu, F.Y. Fan, S.J. Fan, In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33(18), 4628–4638 (2012). doi:10.1016/j.biomaterials.2012.03.020

    Article  Google Scholar 

  45. M. Cimons, R&D toxicity test to be eliminated. Nat. Med. 7(10), 1077 (2001). doi:10.1038/nm1001-1077a

    Article  Google Scholar 

  46. S.A. Meyer, A.J. Marchand, J.L. Hight, G.H. Roberts, L.B. Escalon, L.S. Inouye, D.K. MacMillan, Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J. Appl. Toxicol. 25(5), 427–434 (2005). doi:10.1002/jat.1090

    Article  Google Scholar 

  47. H. Jung, S.C. Choi, Sequential method of estimating the LD50 using a modified up-and-down rule. J. Biopharm. Stat. 4(1), 19–30 (1994). doi:10.1080/10543409408835069

    Article  Google Scholar 

  48. J. Liu, D.Y. Stainier, Zebrafish in the study of early cardiac development. Circ. Res. 110(6), 870–874 (2012). doi:10.1161/circresaha.111.246504

    Article  Google Scholar 

  49. S.P. Yang, O. Bar-Ilan, R.E. Peterson, W. Heideman, R.J. Hamers, J.A. Pedersen, Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ. Sci. Technol. (2013). doi:10.1021/es3047334

    Google Scholar 

  50. N.D. Lawson, B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248(2), 307–318 (2002)

    Article  Google Scholar 

  51. D.J. Chang, H. An, K.S. Kim, H.H. Kim, J. Jung, J.M. Lee, N.J. Kim, Y.T. Han, H. Yun, S. Lee, G. Lee, J.S. Lee, J.H. Cha, J.H. Park, J.W. Park, S.C. Lee, S.G. Kim, J.H. Kim, H.Y. Lee, K.W. Kim, Y.G. Suh, Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J. Med. Chem. 55(24), 10863–10884 (2012). doi:10.1021/jm301488q

    Article  Google Scholar 

  52. W.Y. Ayen, N. Kumar, In vivo evaluation of doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox. Pharm. Res. 29(9), 2522–2533 (2012). doi:10.1007/s11095-012-0783-8

    Article  Google Scholar 

  53. D.K. Tiwari, T. Jin, J. Behari, Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats. Int. J. Nanomedicine 6, 463–475 (2011). doi:10.2147/IJN.S15124

    Google Scholar 

  54. K. Yamashita, Y. Yoshioka, H. Pan, M. Taira, T. Ogura, T. Nagano, M. Aoyama, K. Nagano, Y. Abe, H. Kamada, S.I. Tsunoda, H. Aoshima, H. Nabeshi, T. Yoshikawa, Y. Tsutsumi, Biochemical and hematologic effects of polyvinylpyrrolidone-wrapped fullerene C60 after oral administration. Pharmazie 68(1), 54–57 (2013)

    Google Scholar 

  55. F. Petitot, P. Lestaevel, E. Tourlonias, C. Mazzucco, S. Jacquinot, B. Dhieux, O. Delissen, B.B. Tournier, F. Gensdarmes, P. Beaunier, I. Dublineau, Inhalation of uranium nanoparticles: respiratory tract deposition and translocation to secondary target organs in rats. Toxicol. Lett. 217(3), 217–225 (2013). doi:10.1016/j.toxlet.2012.12.022

    Article  Google Scholar 

  56. L. Zhang, R. Bai, B. Li, C. Ge, J. Du, Y. Liu, L. Le Guyader, Y. Zhao, Y. Wu, S. He, Y. Ma, C. Chen, Rutile TiO(2) particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol. Lett. 207(1), 73–81 (2011). doi:10.1016/j.toxlet.2011.08.001

    Article  Google Scholar 

  57. T. Coccini, S. Barni, R. Vaccarone, P. Mustarelli, L. Manzo, E. Roda, Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats. Histol. Histopathol. 28(2), 195–209 (2013)

    Google Scholar 

  58. K. Isoda, E. Tetsuka, Y. Shimizu, K. Saitoh, I. Ishida, M. Tezuka, Liver injury induced by thirty- and fifty-nanometer-diameter silica nanoparticles. Biol. Pharm. Bull. 36(3), 370–375 (2013)

    Article  Google Scholar 

  59. M.B. Genter, N.C. Newman, H.G. Shertzer, S.F. Ali, B. Bolon, Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol. Pathol. 40(7), 1004–1013 (2012). doi:10.1177/0192623312444470

    Article  Google Scholar 

  60. S. Jain, P.U. Valvi, N.K. Swarnakar, K. Thanki, Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharm. 9(9), 2542–2553 (2012). doi:10.1021/mp300320d

    Article  Google Scholar 

  61. Y. Cui, H. Liu, Y. Ze, Z. Zengli, Y. Hu, Z. Cheng, J. Cheng, R. Hu, G. Gao, L. Wang, M. Tang, F. Hong, Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol. Sci. 128(1), 171–185 (2012). doi:10.1093/toxsci/kfs153

    Article  Google Scholar 

  62. Y. Ze, R. Hu, X. Wang, B. Li, J. Su, Y. Wang, X. Sang, N. Guan, X. Zhao, S. Gui, L. Zhu, Z. Cheng, J. Cheng, L. Sheng, Q. Sun, L. Wang, F. Hong, Neurotoxicity and gene-expressed profile in brain injured mice caused by exposure to titanium dioxide nanoparticles. J. Biomed. Mater. Res. A (2013). doi:10.1002/jbm.a.34705

    Google Scholar 

  63. D.H. Jo, T.G. Lee, J.H. Kim, Nanotechnology and nanotoxicology in retinopathy. Int. J. Mol. Sci. 12(11), 8288–8301 (2011). doi:10.3390/ijms12118288

    Article  Google Scholar 

  64. R. Coradeghini, S. Gioria, C.P. Garcia, P. Nativo, F. Franchini, D. Gilliland, J. Ponti, F. Rossi, Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett. 217(3), 205–216 (2013). doi:10.1016/j.toxlet.2012.11.022

    Article  Google Scholar 

  65. S. Xiong, S. George, H. Yu, R. Damoiseaux, B. France, K.W. Ng, J.S. Loo, Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch. Toxicol. (2012). doi:10.1007/s00204-012-0938-8

    Google Scholar 

  66. B. Yu, Y. Zhang, W. Zheng, C. Fan, T. Chen, Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem. 51(16), 8956–8963 (2012). doi:10.1021/ic301050v

    Article  Google Scholar 

  67. E.C. Cho, J. Xie, P.A. Wurm, Y. Xia, Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9(3), 1080–1084 (2009). doi:10.1021/nl803487r

    Article  Google Scholar 

  68. P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen, Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 12(9–10), 635–641 (2004). doi:10.1080/10611860400015936

    Article  Google Scholar 

  69. H.A. Liu, Y.L. Liu, Z.Z. Ma, J.C. Wang, Q. Zhang, A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest. Ophthalmol. Vis. Sci. 52(7), 4789–4794 (2011). doi:10.1167/iovs.10-5891

    Article  Google Scholar 

  70. J.W. Hong, Y.W. Lee, M. Kim, S.W. Kang, S.W. Han, One-pot synthesis and electrocatalytic activity of octapodal Au-Pd nanoparticles. Chem. Commun. (Camb.) 47(9), 2553–2555 (2011). doi:10.1039/c0cc04856a

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Biosignal Analysis Technology Innovation Program (2009-0090895) of MEST/NRF, the Pioneer Research Program (2012-0009544) of MEST/NRF, Seoul National University Research Grant (800-20140542), and the Development of Characterization Techniques for the Nanomaterials Safety Project of KRCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Jo, D.H., Kim, J.H., Lee, T.G., Kim, J.H. (2015). Assessing Toxicity of Nanoparticles: In Vitro and In Vivo Assays. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics