Skip to main content

Carbonate Apatite Bone Replacement

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Although bone apatite is the carbonate apatite which contains 6–9 mass% carbonate in its apatite structure, sintered hydroxyapatite free from carbonate has been used as artificial bone substitutes since carbonate apatite cannot be sintered due to the thermal decomposition at high temperature required for sintering. We have proposed a two-step fabrication method for fabrication of carbonate apatite block. First step is the fabrication of a precursor block such as calcium carbonate and tricalcium phosphate. Then the precursor block is immersed in solution in which missing elements for the fabrication of carbonate apatite is supplied to the precursor from the solution. Based on the dissolution-precipitation reaction, the composition of the precursor is transformed to carbonate apatite, the inorganic component of the bone. Carbonate apatite thus fabricated was found to upregulate osteoblastic cells’ differentiation process. Osteoclasts resorbed carbonate apatite whereas no resorption pits were observed in the case of sintered hydroxyapatite. As a result, carbonate apatite showed much higher osteoconductivity than sintered hydroxyapatite. Furthermore, carbonate apatite is replaced to the bone when implanted in the bone defect, whereas sintered hydroxyapatite remained in the bone defect keeping its original shape. Therefore, carbonate apatite fabricated based on dissolution-precipitation reaction using a precursor is thought to be one of an ideal bone replacements for the next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishikawa K, Matsuya S, Miyamoto Y, Kawate K (2003) Bioceramics. In: Mai YW, Teoh SH (eds) Comprehensive structural integrity, vol 9, Bioengineering. Elsevier, San Diego, pp 169–214

    Chapter  Google Scholar 

  2. LeGerous RZ (1991) Calcium phosphates in oral biology and medicine. Karger, New York

    Book  Google Scholar 

  3. LeGeros RZ, Ben-Nissan B (2014) Introduction to synthetic and biological apatites. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer, New York, pp 1–18

    Chapter  Google Scholar 

  4. Elliot JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  5. Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T (1997) Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res 36:522–528

    Article  Google Scholar 

  6. Okazaki M, Moriwaki Y, Aoba T, Doi Y, Takahashi J (1981) Solubility behavior of CO3 apatites in relation to crystallinity. Caries Res 15:477–483

    Article  Google Scholar 

  7. Ishikawa K, Ishikawa Y, Kuwayama N (1991) Preparation of carbonate-bearing hydroxyapatites and their sintering properties. Chem Exp 6(7):463–466

    Google Scholar 

  8. Aoki H, Kato K, Ogiso M (1971) Studies on the application of apatite to dental materials. J Dent Eng 18:86–89

    Google Scholar 

  9. Jarcho M (1980) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    Google Scholar 

  10. de Groot K (1983) Bioceramics of calcium phosphates. CRC Press, Boca Raton

    Google Scholar 

  11. Sekiya M (1964) Gypsum. Gihodo, Tokyo

    Google Scholar 

  12. Ishikawa K (2010) Bone substitute fabrication based on dissolution-precipitation reaction. Materials 3:1138–1155

    Article  Google Scholar 

  13. Ishikawa K, Matsuya S, Lin X, Zhang L, Yuasa T, Miyamoto Y (2010) Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block. J Ceram Soc Jpn 118(5):341–344

    Article  Google Scholar 

  14. Suzuki Y, Matsuya S, Udoh K, Nakagawa M, Tsukiyama Y, Koyano K, Ishikawa K (2005) Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment. Dent Mater J 24(4):515–521

    Article  Google Scholar 

  15. Lowmunkong R, Sohmura T, Takahashi J, Suzuki Y, Matsuya S, Ishikawa K (2007) Transformation of 3DP gypsum model to HA by treating in ammonium phosphate solution. J Biomed Mater Res Part B App Biomater 80B:386–393

    Article  Google Scholar 

  16. Lowmunkong R, Sohmura T, Suzuki Y, Matsuya S, Ishikawa K (2009) Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J Biomed Mater Res B Appl Biomater 90(2):531–539

    Article  Google Scholar 

  17. Wakae H, Takeuchi A, Udoh K, Matsuya S, Munar M, LeGeros RZ, Nakasima A, Ishikawa K (2008) Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of α-tricalcium phosphate in carbonate solutions. J Biomed Mater Res A 87(4):957–963

    Article  Google Scholar 

  18. Maruta M, Matsuya S, Nakamura S, Ishikawa K (2011) Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam. Dent Mater J 30(1):14–20

    Article  Google Scholar 

  19. Nomura S, Tsuru K, Matsuya S, Takahashi I, Ishikawa K (2014) Fabrication of carbonate apatite block from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution. Dent Mater J 33(2):166–172

    Article  Google Scholar 

  20. Lee Y, Hahm YM, Matsuya S, Nakagawa M, Ishikawa K (2007) Development of macropores in calcium carbonate body using novel carbonation method of calcium hydroxide/sodium chloride composite. J Mater Sci 42:5728–5735

    Article  Google Scholar 

  21. Lee Y, Hahm YM, Matsuya S, Nakagawa M, Ishikawa K (2007) Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions. J Mater Sci 42:7843–7849

    Article  Google Scholar 

  22. Otsu A, Tsuru K, Maruta M, Munar ML, Matsuya S, Ishikawa K (2012) Fabrication of microporous calcite block from calcium hydroxide compact under carbon dioxide atmosphere at high temperature. Dent Mater J 31(4):593–600

    Article  Google Scholar 

  23. Monma H, Kanazawa T (1976) The hydration of α-tricalcium phosphate. Yogyo Kyokai-Shi 84:209–213

    Article  Google Scholar 

  24. Ishikawa K (2008) Calcium phosphate cement. In: Kokubo T (ed) Handbook of bioceramics and their application. CRC Press, Boca Raton, pp 464–484

    Google Scholar 

  25. Nagai H, Fujioka-Kobayashi M, Fujisawa K, Ohe G, Takamaru N, Hara K, Uchida D, Tamatani T, Ishikawa K, Miyamoto Y (2015) Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. J Mater Sci Mater Med 26(2):99–107

    Google Scholar 

  26. To be submitted

    Google Scholar 

  27. Nguyen XTT, Maruta M, Tsuru K, Matsuya S, Ishikawa K (submitted) Fabrication and histological study of ant colony type carbonate apatite foam. Biomaterials

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Ishikawa, K. (2016). Carbonate Apatite Bone Replacement. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_8

Download citation

Publish with us

Policies and ethics