Skip to main content

History of Development and Use of the Bioceramics and Biocomposites

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Bioceramics is a relatively new field; it did not exist until the beginning of 1970, when these materials were shown to restore osteoarticular and dental functions, as well as act as a replacement material for autografts and allograft bone reconstructions. Bioceramics used to replace, repair, or reconstruct human body parts or complex living tissues have differences in their chemical nature, properties, and applications, such as the use of alumina for hip prosthesis versus CaP bioceramics for bone regeneration. Alumina is classified as an inert bioceramic, while CaP bioceramics are considered bioactive biomaterials, able to be absorbed or bond directly with bone. This review concentrates on the development and use of bioceramics and biocomposites and is limited to CaP bioceramics. Bioactive bioceramics are recommended for use as an alternative or additive to autogenous bone for various procedures: orthopedic and dental applications, scaffolds for tissue engineering, vectors for gene therapy, and as a drug delivery system. There are two physical properties of bioceramics that are considered important for optimal biological performance, which includes bioceramic-cell interactions, bioceramic resorption, the bioceramic-tissue interface, and new bone formation. These fundamental properties are interconnecting macroporosity and appropriate microporosity. CaP bioceramics are a recent development in bone surgery that act as a replacement for auto- and allografts, which have been engineered less than 100 years from the first medical applications and less than 30 years from the initial manufacturing of medical devices and experiments with bone regeneration. Bioactive bioceramics have largely contributed to this revolution in medicine. Numerous innovations in this field are now appearing; it is the beginning of bioceramics and not the “has-been medical device.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daculsi G, Jegoux F, Layrolle P (2010) The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Advanced biomaterials. Wiley, New York, pp 101–141

    Chapter  Google Scholar 

  2. de Groot K (ed) (1983) Ceramics of calcium phosphate: preparation and properties. In: Bioceramics of calcium phosphate. CRC Press, Boca Raton, pp 100–114

    Google Scholar 

  3. Galletti PM, Boretos JW (1983) Report on the consensus development conference on clinical applications of biomaterials, November 1983. J Biomed Mater Res 17(3):539–555

    Article  Google Scholar 

  4. Williams DF (1987) Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986, vol 4. Elsevier, Amsterdam

    Google Scholar 

  5. Dorozhkin SV (2013) A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C 33(6):3085–3110

    Google Scholar 

  6. Carter CB, Norton MG (2007) Ceramic materials. Science and engineering. Springer, New York, p 716

    Google Scholar 

  7. Montel GR (1958) Contribution a l’etude des mecanismes de synthese de la fluorapatite. Masson et Cie, Paris

    Google Scholar 

  8. LeGeros R (1967) Crystallographic studies on the carbonate substitution in the apatite structure. New York University, New York

    Google Scholar 

  9. CNRS (ed) (1974) Physico-Chimie et Cristallographie des apatites d’Intérêt Biologique, vol 230, Colloques Internationaux CNRS. Editions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  10. Elliott J (1964) The crystallographic structure of dental enamel and related apatites. University of London, London

    Google Scholar 

  11. Oonishi H, Aoki H, Sawai K (eds) (1989) Bioceramics, vol 1. Ishiyaku-Euro America, Tokyo/St. Louis

    Google Scholar 

  12. Albee F (1920) Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 71:32–36

    Article  Google Scholar 

  13. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    Google Scholar 

  14. DeGroot K (ed) (1983) Ceramics of calcium phosphate : preparation and properties. In: Bioceramics of calcium phosphates. CRC Press, Boca Raton, pp 100–114

    Google Scholar 

  15. Metsger DS, Driskell T, Paulsrud J (1982) Tricalcium phosphate ceramic – a resorbable bone implant: review and current status. J Am Dent Assoc 105(6):1035–1038

    Article  Google Scholar 

  16. Akao M, Aoki H, Kato K (1981) Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci 16(3):809–812

    Article  Google Scholar 

  17. LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry. Adv Dent Res 2:164–183

    Google Scholar 

  18. Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infraboney defects. J Periodontol 63:729–735

    Article  Google Scholar 

  19. Denissen HW (1979) PhD thesis, Vrije Universiteit, Amsterdam

    Google Scholar 

  20. Ellinger RF, Nery EB, Lynch KL (1986) Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent 3:223

    Google Scholar 

  21. Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infraboney defects. J Periodontol 63:729–735

    Article  Google Scholar 

  22. LeGeros RZ, Nery E, Daculsi G, Lynch K, Kerebel B (1988). In vivo transformation of biphasic calcium phosphate of varying b-TCP/HA ratios: ultrastructural characterization. Third World Biomaterials Congress (abstract no. 35)

    Google Scholar 

  23. LeGeros RZ, Daculsi G (1990) In vivo transformation of biphasic calcium phosphate ceramics: ultrastructural and physicochemical characterization. In: Yamamuro N, Hench L, Wilson J (eds) Handbook of bioactive ceramics, vol 2. CRC Press, Boca Raton, p 1728

    Google Scholar 

  24. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics: ultrastructural and physico-chemical characterization. J Biomed Mater Res 23:883–894

    Article  Google Scholar 

  25. Nery EB, LeGeros RZ, Lynch KL, Kalbfleisch J (1992) Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β-TCP in periodontal osseous defects. J Periodontol 63:729–735

    Article  Google Scholar 

  26. Daculsi G, Passuti N (1990) Effect of macroporosity for osseous substitution of calcium phosphate ceramic. Biomaterials 11:86–87

    Google Scholar 

  27. Daculsi G, Passuti N, Martin S, Deudon C, LeGeros RZ (1990) Macroporous calcium phosphate ceramic for long bone surgery in human and dogs. J Biomed Mater Res 24(379):39

    Google Scholar 

  28. Daculsi G, Bagot D’arc M, Corlieu P, Gersdorff M (1992) Ma croporous biphasic calcium phosphate efficiency in mastoid cavity obliteration. Ann Otol Rhinol Laryngol 101:669–674

    Article  Google Scholar 

  29. Trecant M, Delecrin J, Royer J, Goyenvalle E, Daculsi G (1994) Machanical changes in macroporous calcium phosphate ceramics after implantation in bone. Clin Mater 15:233–240

    Article  Google Scholar 

  30. Gouin F, Delecrin J, Passuti N, Touchais S, Poirier P, Bainvel JV (1995) Comblement osseux par céramique phosphocalcique biphasée macroporeuse : a propos de 23 cas. Rev Chir Orthop 81:59–65

    Google Scholar 

  31. Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80(1):13–18

    Article  Google Scholar 

  32. Cavagna R, Daculsi G, Bouler J-M (1999) Macroporous biphasic calcium phosphate: a prospective study of 106 cases in lumbar spine fusion. J Long Term Eff Med Implants 9:403–412

    Google Scholar 

  33. Soares EJC, Franca VP, Wykrota L, Stumpf S (1998) Clinical evaluation of a new bioaceramic opthalmic implant. In: LeGeros RZ, LeGeros JP (eds) Bioceramics 11. World Scientific, Singapore, pp 633–636

    Google Scholar 

  34. Wykrota LL, Garrido CA, Wykrota FHI (1998) Clinical evaluation of biphasic calcium phosphate ceramic use in orthopaedic lesions. In: LeGeros RZ, LeGeros JP (eds) Bioceramics 11. World Scientific, Singapore, pp 641–644

    Google Scholar 

  35. Malard O, Guicheux J, Bouler JM, Gauthier O, Beauvillain de Montreuil C, Aguado E, Pilet P, LeGeros R, Daculsi G (2005) Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area : a dog study. Bone 36:323–330

    Article  Google Scholar 

  36. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478

    Article  Google Scholar 

  37. Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14(3):195–200

    Article  Google Scholar 

  38. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphates: preparation and properties. J Mater Sci Mater Med 14:201–210

    Article  Google Scholar 

  39. Jarcho M (1978) Hydroxylapatite ceramic. US Patent 1978, N(4,097,935)

    Google Scholar 

  40. Hench LL, Splinter RJ, Allen WC, Greelee TK (1978) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141

    Google Scholar 

  41. Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  42. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monographs in oral sciences, vol 15. Myers H (ed), S. Karger, Basel

    Google Scholar 

  43. LeGeros RZ, Daculsi G, Orly I, LeGeros JP (1991) Substrate surface dissolution and interfacial biological mineralization. In: Davies JED (ed) The bone biomaterial interface. University of Toronto Press, Toronto, pp 76–88

    Google Scholar 

  44. Osborne J, Newesely H (1980) The material science of calcium phosphate ceramic. Biomaterials 1:108–111

    Article  Google Scholar 

  45. Heughebaert M, LeGeros RZ, Gineste M, Guilhem A (1988) Hydroxyapatite (HA) ceramics implanated in non-bone forming sites: physico-chemical characterization. J Biomed Mater Res 22:257–268

    Article  Google Scholar 

  46. Daculsi G, LeGeros RZ, Heugheaert M, Barbieux I (1990) Formation of carbonate apatite apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46:20–27

    Article  Google Scholar 

  47. Daculsi G, LeGeros R (2008) Tricalciumphosphate/hydroxyapatite biphasic calcium phosphate (BCP) bioceramics. In: Kokubo T (ed) Bioceramics and theirs clinical applications. Woodhead Publishing, Cambridge, UK, pp 395–424

    Chapter  Google Scholar 

  48. Best S (1990) Chracterization, sintering and mechanical behaviour of hydroxyapatite ceramics. PhD thesis, University of London

    Google Scholar 

  49. Raemdonck W, Ducheyne P, De MP (1984) Calcium phosphate ceramics. In: Ducheyne P, Hastings GW (eds) Metal and ceramic biomaterials, vol II, Strength and surface. CRC Press, Boca Raton, pp 143–166

    Google Scholar 

  50. Ducheyne P, Lemons JE (eds) (1988) Bioceramics: material characteristics versus in vivo behaviour, vol 523. Ann NY Acad Sc, New York

    Google Scholar 

  51. Yamamuro T, Hench LL, Wilson J (eds) (1990) CRC handbook of bioactive ceramics, vol II, Calcium phosphate and hydroxylapatite ceramics. CRC press, Boca Raton

    Google Scholar 

  52. Aoki H (1991) Science and medical applications of hydroxyapatite, vol 50. Japan Association of Apatite Sciences (JAAS), Takayama Press Centre Co, Tokyo, pp 27–30

    Google Scholar 

  53. Daculsi G (2006) Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv Sci Technol 49:9–13

    Article  Google Scholar 

  54. Bouler JM, LeGeros RZ, Daculsi G (2000) Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res 51:680–684

    Article  Google Scholar 

  55. Daculsi G, Khairoun I, LeGeros RZ, Moreau F, Pilet P, Bourges X, Weiss P, Gauthier O (2006) Bone ingrowth at the expense of a novel macroprous calcium phosphate cement. Key Eng Mater 330–332:811–814

    Google Scholar 

  56. LeGeros RZ, Zheng R, Kijkowska R, Fan D, LeGeros JP (1994) Variations in composition and crystallinity of ‘hydroxyapatite (HA)’ preparations. In: Horowitz E, Parr JE (eds) Characterization and performance of calcium phosphate coatings for implants, vol 1198, American Society for Testing Materials STP. ASTM, Philadelphia, pp 43–53

    Chapter  Google Scholar 

  57. Welch JH, Gutt W (1961) High temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc:4442–4444

    Google Scholar 

  58. Klawitter JJ, Hulbert SF (1971) Application of porous ceramics for the attachment of load bearing internal orthopaedic applications. J Biomed Mater Res 2:161–229

    Article  Google Scholar 

  59. Ito K, Ooi Y (1990) Osteogenic activity of synthetic hydroxylapatite with controlled texture- on the relationship of osteogenic quantity with sintering temperature and pore size. In: Yamamuro T, Hench LL, Wilson J (eds) CRC handbook of bioactive ceramics, vol II, Calcium phosphate and hydroxylapatite ceramics. CRC Press, Boca Raton, pp 39–44

    Google Scholar 

  60. Klein CPAT, Patka P, Hollander W (1990) A comparison between hydroxylapatite and β-whitlockite macroporous ceramics implanted in dog femurs. In: Yamamuro T, Hench LL, Wilson J (eds) CRC handbook of bioactive ceramics, vol II, Calcium phosphate and hydroxylapatite ceramics. CRC Press, Boca Raton, pp 53–60

    Google Scholar 

  61. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81

    Article  Google Scholar 

  62. Bohne W, Pouezat JA, Peru L, Daculsi G (1993) Heating of calcium phopshate crystals: morphological consequences and biological implications. Cells Mater 3:377–382

    Google Scholar 

  63. Chan O, Coathup MJ, Nesbitt A, Ho CY, Hing KA, Buckland T, Campion C, Blunn GW (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute. Acta Biomater 8(7):2788–2794

    Article  Google Scholar 

  64. Malmström J, Adolfsson E, Arvidsson A, Thomsen P (2007) Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Clin Implant Dent Relat Res 9(2):79–88

    Article  Google Scholar 

  65. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16(5):46–75

    Article  Google Scholar 

  66. LeGeros RZ (1993) Biodegradation and bioresoprtion of calcium phosphate ceramics. Clin Mater 14:65–88

    Article  Google Scholar 

  67. Kerebel B, Daculsi G, Verbaere A (1976) Ultrastructural and crystallographic study of biological apatites. J Ultrastruct Res 57:266–275

    Article  Google Scholar 

  68. Daculsi G, Pouezat JA, Peru L, Maugars Y, Legeros RZ (1991). In: Bonucci E (ed) Ectopic calcifications in mineralization in biological systems. CRC Press Boca Raton. 32 p

    Google Scholar 

  69. Daculsi G, LeGeros RZ, LeGeros J, Mitre D (1991) Lattice defects in calcium phosphate ceramics: high resolution TEM ultrastructural study. J Biomed Mater Res App Biomat 2:147–152

    Article  Google Scholar 

  70. Daculsi G, LeGeros R, Mitre D (1989) Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int 45:95–103

    Article  Google Scholar 

  71. Bouler JM, Trécant M, Delécrin J, Royer J, Passuti N, Daculsi G (1996) Macroporous biphasic calcium phosphate ceramics : influence of five synthesis parameters on compressive strength. J Biomed Mater Res 32:603–609

    Article  Google Scholar 

  72. LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88

    Article  Google Scholar 

  73. Basle MF, Chappard D, Grizon F, Filmon R, Delecrin J, Daculsi G, Rebel A (1993) Osteoclastic resorption of CaP biomaterials implanted in rabbit bone. Calcif Tissue Int 53:348–356

    Article  Google Scholar 

  74. Gauthier O, Bouler J-M, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19(1–3):133–139

    Article  Google Scholar 

  75. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  76. Ripamonti U (1991) The morphogeneis of bone in replicas of porous hydroxyapatiteobtained by conversion of calcium carbonate exosk eletons of coral. J Bone Joint Surg Am 73:692–703

    Google Scholar 

  77. Kuboki Y, Takita H, Kobayashi D (1998) BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 39:190–199

    Article  Google Scholar 

  78. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36(6):1086–1093

    Article  Google Scholar 

  79. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, De Groot K (2005) Microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575

    Article  Google Scholar 

  80. Yuan H, Kurashina K, Joost de Bruijn D, Li Y, de Groot K, Zhang X (1999) A preliminary study of osteoinduction of two kinds of calcium phosphate bioceramics. Biomaterials 20:1799–1806

    Article  Google Scholar 

  81. Reddi AH (2000) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells and biomimetic biomaterials. Tissue Eng 6:351–359

    Article  Google Scholar 

  82. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 000(275):280–286

    Google Scholar 

  83. Barrere F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, Layrolle P (2003) Osteogenicity of octacalcium phosphate coatings applied on porous titanium. J Biomed Mater Res 66A:779

    Article  Google Scholar 

  84. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  Google Scholar 

  85. Caplan AI, Fink DJ, Goto T, Linton AE, Young RG, Wakitani S, Goldberg V, Haynesworth SE (1993) In: Wetal JD (ed) Mesenchymal stem cells for tissue repair. The anterior cruciate ligament: current and future concepts. Raven, New York, pp 405–417

    Google Scholar 

  86. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  Google Scholar 

  87. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  Google Scholar 

  88. Kadiyala S, Jaiswal N, Bruder SP (1997) Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 3:173–185

    Article  Google Scholar 

  89. Livingston AT, Peter S, Archambault M, Van Den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A:1927–1935

    Google Scholar 

  90. Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C (2002) Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50:510–516

    Google Scholar 

  91. Silber JS, Anderson DG, DaVner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139

    Article  Google Scholar 

  92. Tomford WW (2000) Bone allografts: past, present and future. Cell Tissue Bank 1(2):105–109

    Article  Google Scholar 

  93. De Santis R, Guarino V, Ambrosio L (2009) Composite biomaterials for bone repair. In: Planell JA, Best SM, Lacroix D (eds) Bone repair biomaterials, Woodhead publishing in biomaterials. CRC Press, Boca Raton, pp 252–270

    Chapter  Google Scholar 

  94. Turczyn R, Weiss P, Lapkowski M, Daculsi G (2000) In situ self hardening bioactive composite for bone and dental surgery. J Biomater Sci Polym Ed 11(2):217–223

    Article  Google Scholar 

  95. Włodarski KH, Włodarski PK, Galus R (2008) Bioactive composites for bone regeneration. Review. Ortop Traumatol Rehabil 10(3):201–210

    Google Scholar 

  96. Mouriño V, Cattalini JP, Roether JA, Dubey P, Roy I, Boccaccini AR (2013) Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 10(10):1353–1365

    Article  Google Scholar 

  97. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  98. Suming L, Michel V (1999) Biodegradable polymers: polyesters. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery. Wiley, New York, pp 71–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Daculsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Daculsi, G. (2016). History of Development and Use of the Bioceramics and Biocomposites. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_2

Download citation

Publish with us

Policies and ethics