Skip to main content

Sparse Collocation Methods for Stochastic Interpolation and Quadrature

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

In this chapter, the authors survey the family of sparse stochastic collocation methods (SCMs) for partial differential equations with random input data. The SCMs under consideration can be viewed as a special case of the generalized stochastic finite element method (Gunzburger et al., Acta Numer 23:521–650, 2014), where the approximation of the solution dependences on the random variables is constructed using Lagrange polynomial interpolation. Relying on the “delta property” of the interpolation scheme, the physical and stochastic degrees of freedom can be decoupled, such that the SCMs have the same nonintrusive property as stochastic sampling methods but feature much faster convergence. To define the interpolation schemes or interpolatory quadrature rules, several approaches have been developed, including global sparse polynomial approximation, for which global polynomial subspaces (e.g., sparse Smolyak spaces (Nobile et al., SIAM J Numer Anal 46:2309–2345, 2008) or quasi-optimal subspaces (Tran et al., Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Tech. Rep. ORNL/TM-2015/341, Oak Ridge National Laboratory, 2015)) are used to exploit the inherent regularity of the PDE solution, and local sparse approximation, for which hierarchical polynomial bases (Ma and Zabaras, J Comput Phys 228:3084–3113, 2009; Bungartz and Griebel, Acta Numer 13:1–123, 2004) or wavelet bases (Gunzburger et al., Lect Notes Comput Sci Eng 97:137–170, Springer, 2014) are used to accurately capture irregular behaviors of the PDE solution. All these method classes are surveyed in this chapter, including some novel recent developments. Details about the construction of the various algorithms and about theoretical error estimates of the algorithms are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I.M., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004) (electronic)

    Google Scholar 

  3. Babuška, I.M., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194, 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, A., Lang, A., Schwab, C.: Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 53, 3–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. Lect. Notes Comput. Sci. Eng. 76, 43–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67, 732–751 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, J., Tempone, R., Nobile, F., Tamellni, L.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22, 1250023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Springer, New York (2007)

    MATH  Google Scholar 

  9. Białas-Cież, L., Calvi, J.-P.: Pseudo Leja sequences. Annali di Matematica Pura ed Applicata 191, 53–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic sPDEs. SIAM J. Sci. Comput. 31, 4281–4304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  12. Brutman, L.: On the Lebesgue function for polynomial interpolation. SIAM J. Numer. Anal. 15, 694–704 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buffa, A., Maday, Y., Patera, A., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Model. Numer. Anal. 46, 595–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chkifa, A., Cohen, A., DeVore, R., Schwab, C.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Modél. Math. Anal. Numér. 47, 253–280 (2013)

    Article  MATH  Google Scholar 

  16. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103, 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chkifa, M.A.: On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection. J. Approx. Theory 166, 176–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  19. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best n-term Galerkin approximations for a class of elliptic SPDEs. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9, 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  24. DeVore, R.A., Lorentz, G.G.: Constructive approximation. Volume 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)

    Google Scholar 

  25. Dexter, N., Webster, C., Zhang, G.: Explicit cost bounds of stochastic Galerkin approximations for parameterized PDEs with random coefficients. ArXiv:1507.05545 (2015)

    Google Scholar 

  26. Dzjadyk, V.K., Ivanov, V.V.: On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points. Anal. Math. 9, 85–97 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Elman, H., Miller, C.: Stochastic collocation with kernel density estimation. Tech. Rep., Department of Computer Science, University of Maryland (2011)

    MATH  Google Scholar 

  28. Elman, H.C., Miller, C.W., Phipps, E.T., Tuminaro, R.S.: Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int. J. Uncertain. Quantif. 1, 19–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fishman, G.: Monte Carlo. Springer Series in Operations Research. Springer, New York (1996)

    Book  MATH  Google Scholar 

  30. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194, 205–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Galindo, D., Jantsch, P., Webster, C.G., Zhang, G.: Accelerating stochastic collocation methods for partial differential equations with random input data. Tech. Rep. ORNL/TM-2015/219, Oak Ridge National Laboratory (2015)

    Google Scholar 

  32. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gentleman, W.M.: Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation. Commun. ACM 15, 343–346 (1972)

    MathSciNet  MATH  Google Scholar 

  34. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  36. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61, 151–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gruber, P.: Convex and Discrete Geometry. Springer Grundlehren der mathematischen Wissenschaften (2007)

    Google Scholar 

  39. Gunzburger, M., Jantsch, P., Teckentrup, A., Webster, C.G.: A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA J. Uncertainty Quantification 3, 1046–1074 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gunzburger, M., Webster, C.G., Zhang, G.: An adaptive wavelet stochastic collocation method for irregular solutions of partial differential equations with random input data. Lect. Notes Comput. Sci. Eng. 97, 137–170. Springer (2014)

    Google Scholar 

  41. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  Google Scholar 

  42. Hansen, M., Schwab, C.: Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachr. 286, 832–860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hansen, M., Schwab, C.: Sparse adaptive approximation of high dimensional parametric initial value problems. Vietnam J. Math. 41, 181–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hoang, V.H., Schwab, C.: Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs – analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45, 3050–3083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jakeman, J.D., Archibald, R., Xiu, D.: Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230, 3977–3997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. The ANZIAM J. Aust. N. Z. Ind. Appl. Math. J. 53, 1–37 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, C.F., Feng, Y.T., Owen, D.R.J., Li, D.F., Davis, I.M.: A Fourier-Karhunen-Loève discretization scheme for stationary random material properties in SFEM. Int. J. Numer. Methods Eng. 73, 1942–1965 (2007)

    Article  MATH  Google Scholar 

  49. Loève, M.: Probability Theory. I. Graduate Texts in Mathematics, vol. 45, 4th edn. Springer, New York (1977)

    Google Scholar 

  50. Loève, M.: Probability Theory. II. Graduate Texts in Mathematics, vol. 46, 4th edn. Springer, New York (1978)

    Google Scholar 

  51. Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228, 3084–3113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma, X., Zabaras, N.: An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229, 3884–3915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Maday, Y., Nguyen, N., Patera, A., Pau, S.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8, 383–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mathelin, L., Hussaini, M.Y., Zang, T.A.: Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38, 209–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis methods in linear elasticity with many parameters. Comput. Methods Appl. Mech. Eng. 197, 4812–4829 (2008)

    Article  MATH  Google Scholar 

  57. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64, 1147–1170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  60. Smith, S.J.: Lebesgue constants in polynomial interpolation. Annales Mathematicae et Informaticae. Int. J. Math. Comput. Sci. 33, 109–123 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963) (English translation)

    Google Scholar 

  62. Stoyanov, M., Webster, C.G.: A gradient-based sampling approach for dimension reduction for partial differential equations with stochastic coefficients. Int. J. Uncertain. Quantif. 5, 49-72 (2015)

    Article  MathSciNet  Google Scholar 

  63. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Anal. 3, 186–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  65. Todor, R.A.: Sparse perturbation algorithms for elliptic PDE’s with stochastic data. Diss. No. 16192, ETH Zurich (2005)

    Google Scholar 

  66. Tran, H., Webster, C.G., Zhang, G.: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Tech. Rep. ORNL/TM-2015/341, Oak Ridge National Laboratory (2015)

    Google Scholar 

  67. Gunzburger, M., Jantsch, P., Teckentrup, A., Webster, C.G.: A multilevel stochastic collocation method for partial differential equations with random input data. Tech. Rep. ORNL/TM-2014/621, Oak Ridge National Laboratory (2014)

    Google Scholar 

  68. Trefethen, L.N.: Is gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Webster, C.G.: Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random input data. PhD thesis, Florida State University (2007)

    Google Scholar 

  70. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  71. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  72. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, G., Gunzburger, M.: Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50, 1922–1940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhang, G., Webster, C., Gunzburger, M., Burkardt, J.: A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection. SIAM J. Numer. Anal. 53, 1508–1536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gunzburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Gunzburger, M., Webster, C.G., Zhang, G. (2017). Sparse Collocation Methods for Stochastic Interpolation and Quadrature. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_29

Download citation

Publish with us

Policies and ethics