Skip to main content
Log in

Multilevel Monte Carlo method for parabolic stochastic partial differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler–Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P., Tchamitchian, P.: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: L 2 theory. J. Anal. Math. 90, 1–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, A.: A finite element method for martingale-driven stochastic partial differential equations. Commum. Stoch. Anal. 4(3), 355–375 (2010)

    MathSciNet  Google Scholar 

  3. Barth, A., Lang, A.: L p and almost sure convergence of a Milstein scheme for stochastic partial differential equations. SAM Report 2011-15, Seminar for Applied Mathematics, ETH Zurich (2011)

  4. Barth, A., Lang, A.: Milstein approximation for advection-diffusion equations driven multiplicative noncontinuous martingale noises. Appl. Math. Optim. (2012). doi:10.1007/s00245-012-9176-y

    MathSciNet  Google Scholar 

  5. Barth, A., Lang, A.: Simulation of stochastic partial differential equations using finite element methods. Stochastics 84(2–3), 217–231 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Barth, A., Schwab, Ch., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow, P.L., Jiang, J.L., Menaldi, J.L.: Pathwise convergence of approximate solutions to Zakai’s equation in a bounded domain. In: Da Prato, G. et al. (eds.) Stochastic Partial Differential Equations and Applications. Proceedings of the Third Meeting on Stochastic Partial Differential Equations and Applications held at Villa Madruzzo, Trento, Italy, January 1990. Pitman Res. Notes Math. Ser., vol. 268, pp. 111–123. Longman Scientific & Technical, Harlow (1992)

    Google Scholar 

  8. Clark, D.S.: Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16, 279–281 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  10. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, Berlin (2000)

    MATH  Google Scholar 

  11. Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numer. Math. 49(2), 343–356 (2009)

    Article  MATH  Google Scholar 

  12. Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A. et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006. Selected Papers Based on the Presentations at the 7th International Conference ‘Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing’, Ulm, Germany, August 14–18, 2006, pp. 343–358. Springer, Berlin (2008)

    Chapter  Google Scholar 

  13. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo method (2011). arXiv:1105.0226 [math.PR]

  15. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77(1), 205–244 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jentzen, A., Röckner, M.: A Milstein scheme for SPDEs (2010). arXiv:1001.2751 [math.NA]

  17. Kantorovitz, S.: On Liu’s analyticity criterion for semigroups. Semigroup Forum 53(2), 262–265 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators, Corr. printing of the 2nd edn. Grundlehren der mathematischen Wissenschaften, vol. 132. Springer, Berlin (1980)

    MATH  Google Scholar 

  19. Kloeden, P., Lord, G., Neuenkirch, A., Shardlow, T.: The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds. J. Comput. Appl. Math. 235(5), 1245–1260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kovács, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise (2011). arXiv:1103.4504 [math.NA]

  22. Lang, A.: Mean square convergence of a semidiscrete scheme for SPDEs of Zakai type driven by square integrable martingales. Proc. Comput. Sci. 1(1), 1609–1617 (2010). ICCS 2010

    Google Scholar 

  23. Mishra, S., Schwab, Ch.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81, 1979–2018 (2012)

    Article  MathSciNet  Google Scholar 

  24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  25. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  26. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd revised and expanded edn. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the European Research Council under grant ERC AdG 247277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Lang.

Additional information

Communicated by Desmond Higham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, A., Lang, A. & Schwab, C. Multilevel Monte Carlo method for parabolic stochastic partial differential equations. Bit Numer Math 53, 3–27 (2013). https://doi.org/10.1007/s10543-012-0401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0401-5

Keywords

Mathematics Subject Classification (2010)

Navigation