Skip to main content

Shallow-Level Centers

Semiconductor Physics
  • 117 Accesses

Abstract

Shallow defect centers play a dominant role as donors and acceptors in nearly all semiconducting devices. The major features of their spectrum can be described by a quasi-hydrogen model, modified only by the dielectric constant and the effective mass of the host semiconductor. This relation yields very good results for higher excited states of a large variety of such defects, while the ground state shows substantial deviations according to the chemical individuality of the defect center. Such individuality can be explained by considering the core potential and the deformation of the lattice after incorporating the defect.

Band anisotropies and the interaction between bands such as conduction-band valleys cause the lifting of some of the degeneracies of the quasi-hydrogen spectrum. Local stress and electric fields cause additional splitting. The dependence of levels on hydrostatic pressure can be used to identify shallow-level defects which are connected to one band only. The influence of externally applied uniaxial stress and electric or magnetic fields can be used for further identification.

Donors and acceptors can bind excitons. The binding energy sensitively depends on the effective mass ratio of electron and hole and the charge state of the impurity. For exciton binding at neutral donors and acceptors, a linear dependence from the ionization energy is found. Isoelectronic impurities can also bind excitons by attracting the electron at the core potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This can easily be seen at the Γ point for k0 = 0: here, we have ψ(k = 0,r) = u(0,r) exp(i0 · r) = u(0,r).

  2. 2.

    In semiconductors with several equivalent minima (Si, Ge), the wavefunction becomes a sum of contributions from each of the minima: \( {\sum}_j{\alpha}_j{F}_{j\;\mathrm{c}}\left(\mathbf{r}\right)\, {u}_{j\;\mathrm{c}}\left({\mathbf{k}}_{j\;0},\mathbf{r}\right) \).

  3. 3.

    n is the principal quantum number, describing the entire energy spectrum for a simple hydrogen atom. All other states are degenerate. Therefore, in a pure Coulomb potential, this quantum number is the only one that determines the energy of a hydrogen level. When deviations from this spherical potential appear in a crystal, the D = Σl(l + 1) = n2 degeneracy of each of these levels is removed, and the energy of the s, p, d, … states is shifted according to R/(n + l)2. The importance of these transitions is discussed in Sect. 1.2. To further lift the remaining degeneracies of the magnetic quantum number, a magnetic field must act (see Sect. 3.4).

  4. 4.

    For instance, when aqH ≅ 50 Å for the 1s state, it is 200 Å for the 2s and 450 Å for the 3s states, making the hydrogenic effective mass approximation a much improved approximation. In addition, in semiconductors where ε/m* is already very large, e.g., in GaAs with εstatm0/mn = 192.5, resulting in aqH = 101.9 Å ≅ 18a, this approximation is quite good for the 1s state. In GaAs, it results in EqH = 5.83 meV, while the experimental values vary from 5.81 to 6.1 meV for GaAs/Si and GaAs/Ge. For more comparisons between theory and experiment, see Bassani et al. (1974).

  5. 5.

    Such a local pseudopotential is used near an impurity as opposed to the nonlocal pseudopotential used for band structure analysis (see Sect. 1.3 of chapter “Quantum Mechanics of Electrons in Crystals”).

  6. 6.

    An empty shell in an fcc sublattice of zincblende structure occurs if 2m = 4i (8j + 7) with integers i,j ≥ 0 (Pohl and Busse 1989); see arrows at m = 14 and 30 in the upper spectrum of Fig. 13.

  7. 7.

    The concentration of the A center and the NN centers is proportional to their absorption strengths.

  8. 8.

    Electron spin resonance (ESR) is also referred to as electron paramagnetic resonance (EPR).

References

  • Abarenkov IV, Heine V (1965) The model potential for positive ions. Philos Mag 12:529

    Article  ADS  Google Scholar 

  • Abragam A, Bleaney B (1976) Electron paramagnetic resonance of transition ions. Claredon, Oxford, UK

    Google Scholar 

  • Aggarwal RL, Ramdas AK (1965a) Effect of uniaxial stress on the excitation spectra of donors in silicon. Phys Rev 137:A602

    Article  ADS  Google Scholar 

  • Aggarwal RL, Ramdas AK (1965b) Optical determination of the symmetry of the ground states of group-V donors in silicon. Phys Rev 140:A1246

    Article  ADS  Google Scholar 

  • Altarelli M, Iadonisi G (1971) Donor ground states of group IV and III-V semiconductors. Nuovo Cimento B 5:21

    Article  ADS  Google Scholar 

  • Appapillai M, Heine V (1972) Solid state group tech rep 5. Cavendish Lab, Cambridge, UK

    Google Scholar 

  • Ashen DJ, Dean PJ, Hurle DTJ, Mullin JB, White AM (1975) The incorporation and characterization of acceptors in epitaxial GaAs. J Phys Chem Solid 36:1041

    Article  ADS  Google Scholar 

  • Austin BJ, Heine V, Sham LJ (1962) General theory of pseudopotentials. Phys Rev 127:276

    Article  ADS  MATH  Google Scholar 

  • Baldereschi A (1970) Valley-orbit interaction in semiconductors. Phys Rev B 1:4673

    Article  ADS  Google Scholar 

  • Baldereschi A, Bassani F (1970) Optical absorption by excitons in a uniform magnetic field. In: Keller SP, Hensel JC, Stern F (eds) Proceedings of the 10th international conference on the physics of semiconductors, Cambridge MA, USA. National Bureau of Standards, Technical Information Service, Springfield, pp 191–196

    Google Scholar 

  • Baldereschi A, Hopfield JJ (1972) Binding to isoelectronic impurities in semiconductors. Phys Rev Lett 28:171

    Article  ADS  Google Scholar 

  • Baldereschi A, Lipari NO (1973) Spherical model of shallow acceptor states in semiconductors. Phys Rev B 8:2697

    Article  ADS  Google Scholar 

  • Baldereschi A, Lipari NO (1976) Interpretation of acceptor spectra in Si and Ge. In: Fumi FG (ed) Proceedings of the 13th international conference on the physics of semiconductors, Rome 1976. Tipografia Marves, Rome, pp 595–598

    Google Scholar 

  • Bassani GF, Celli V (1961) Energy-band structure of solids from a perturbation on the “empty lattice”. J Phys Chem Solid 20:64

    Article  ADS  MATH  Google Scholar 

  • Bassani GF, Pastori Parravicini G (1975) Electronic states and optical transitions in solids. Pergamon, Oxford/New York

    Google Scholar 

  • Bassani GF, Iadosini G, Preziosi B (1969) Band structure and impurity states. Phys Rev 186:735

    Article  ADS  Google Scholar 

  • Bassani GF, Iadosini G, Preziosi B (1974) Electronic impurity levels in semiconductors. Rep Prog Phys 37:1099

    Article  ADS  Google Scholar 

  • Bebb HB (1969) Application of the quantum-defect method to optical transitions involving deep effective-mass-like impurities in semiconductors. Phys Rev 185:1116

    Article  ADS  Google Scholar 

  • Bergh AA, Dean PJ (1976) Light emitting diodes. Claredon, Oxford

    Google Scholar 

  • Bergman K, Grossmann G, Grimmeiss HG, Stavola M, Holm C, Wagner P (1987) Spin triplet states of double donors in silicon. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 883–886

    Google Scholar 

  • Bernholc J, Pantelides ST (1977) Theory of binding energies of acceptors in semiconductors. Phys Rev B 15:4935

    Article  ADS  Google Scholar 

  • Blossey DF (1970) Wannier exciton in an electric field. I. Optical absorption by bound and continuum states. Phys Rev B 2:3976

    Article  ADS  Google Scholar 

  • Blossey DF (1971) Wannier exciton in an electric field. II. Electroabsorption in direct-band-gap solids. Phys Rev B 3:1382

    Article  ADS  Google Scholar 

  • Callaway J (1976) Quantum theory of solid state. Academic Press, New York

    Google Scholar 

  • Cardona M (1969a) Modulation spectroscopy. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, suppl 11. Academic, New York

    Google Scholar 

  • Cardona M (1969b) Optical constants of insulators: dispersion relations. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum Press New York, pp 137–151

    Google Scholar 

  • Carter AC, Skolnick MS, Stradling RA, Leotin JP, Askenazy S (1976) The Zeeman splitting of Si, S, and Te donors in GaP. In: Fumi FG (ed) Proceedings of the 13th international conference on the physics of semiconductors, Rome 1976. Tipografia Marves, Rome, pp 619–622

    Google Scholar 

  • Castner TG Jr (1970) Configuration mixing of subsidiary minima: corrections to the ground-state wave function for donors in silicon. Phys Rev B 2:4911

    Article  ADS  Google Scholar 

  • Cavenett BC (1981) Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv Phys 30:475

    Article  ADS  Google Scholar 

  • Cohen E, Sturge MD (1977) Excited states of excitons bound to nitrogen pairs in GaP. Phys Rev B 15:1039

    Article  ADS  Google Scholar 

  • Cojocari O, Popa V, Ursaki VV, Tiginyanu IM, Hartnagel HL, Daumiller I (2004) GaN Schottky multiplier diodes prepared by electroplating: a study of passivation technology. Semicond Sci Technol 19:1273

    Article  ADS  Google Scholar 

  • Condon EU, Shortley GH (1959) The theory of atomic spectra. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Costato M, Manchinelli F, Reggiani L (1971) Anomalous behavior of shallow donor ground state levels in Ge under pressure. Solid State Commun 9:1335

    Article  ADS  Google Scholar 

  • Craford MG, Holonyak N Jr (1976) The optical properties of the nitrogen isoelectronic trap in GaAs1-xPx. In: Seraphin BO (ed) Optical properties of solids – new developments. North Holland, Amsterdam, pp 187–253

    Google Scholar 

  • Csavinszky P (1965) Corrections to the effective mass theory of shallow impurity states in Si and Ge. J Phys Soc Jpn 20:2027

    Article  ADS  Google Scholar 

  • Davis G, Nazaré MH (1994) The bound exciton model for isoelectronic centres in silicon. In: Heinrich H, Jantsch W (eds) Proceedings of the 17th international conference on defects of semiconductors. Mater Sci Forum 143–147. pp 105–109

    Google Scholar 

  • Dean PJ (1973a) Inter-impurity recombinations in semiconductors. Prog Solid State Chem 8:1

    Article  Google Scholar 

  • Dean PJ (1973b) Lithium donors and the binding of excitons at neutral donors and acceptors in gallium phosphide. In: Williams F (ed) Luminescence of crystals, molecules, and solutions. Plenum Press, New York, pp 538–552

    Google Scholar 

  • Dean PJ (1983) Excitons in semiconductors. In: Di Bartolo B (ed) Collective excitation in semiconductors. Plenum Press, New York, pp 247–315

    Google Scholar 

  • Dean PJ, Herbert DC (1979) Bound excitons in semiconductors. In: Cho K (ed) Excitons. Springer, Berlin, pp 55–182

    Chapter  Google Scholar 

  • Dean PJ, Cuthbert JD, Thomas DG, Lynch RT (1967) Two-electron transitions in the luminescence of excitons bound to neutral donors in gallium phosphide. Phys Rev Lett 18:122

    Article  ADS  Google Scholar 

  • Dean PJ, Cuthbert JD, Lynch RT (1969) Interimpurity recombinations involving the isoelectronic trap bismuth in gallium phosphide. Phys Rev 179:754

    Article  ADS  Google Scholar 

  • Denteneer PJH, Van de Walle CG, Pantelides ST (1989) Microscopic structure of the hydrogen-boron complex in crystalline silicon. Phys Rev B 39:10809

    Article  ADS  Google Scholar 

  • Dietz RE, Thomas DG, Hopfield JJ (1962) “Mirror” absorption and fluorescence in ZnTe. Phys Rev Lett 8:391

    Article  ADS  Google Scholar 

  • Faulkner RA (1968) Toward a theory of isoelectronic impurities in semiconductors. Phys Rev 175:991

    Google Scholar 

  • Faulkner RA (1969) Higher donor excited states for prolate-spheroid conduction bands: a reevaluation of silicon and germanium. Phys Rev 184:713

    Article  ADS  Google Scholar 

  • Feher G (1959) Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys Rev 114:1219

    Article  ADS  Google Scholar 

  • Feher G (1998) The development of ENDOR and other reminescences of the 1950’s. In: Eaton GR, Eaton SS, Salikov KM (eds) Foundation of modern EPR. Worlds Scientific, Singapore, pp 548–556

    Chapter  Google Scholar 

  • Freysoldt C, Grabowski BJ, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:253

    Article  ADS  Google Scholar 

  • Fritzsche H (1962) Effect of stress on the donor wave functions in germanium. Phys Rev 125:1560

    Article  ADS  Google Scholar 

  • Gal M, Cavenett BC, Smith P (1979) New evidence for the two-electron O state in GaP. Phys Rev Lett 43:1611

    Article  ADS  Google Scholar 

  • Gel’mont BL, D’yakonov MI (1972) Acceptor levels in diamond-type semiconductors. Sov Phys Semicond 5:1905

    Google Scholar 

  • Goñi AR, Syassen K (1998) Optical properties of semiconductors under pressure. In: Suski T, Paul W (eds) High pressure in semiconductor physics I. Semiconductors and semimetals, vol 54. Academic Press, San Diego, pp 247–425

    Google Scholar 

  • Gorczyca I, Svane A, Christensen NE (1997) Calculated defect levels in GaN and AlN and their pressure coefficients. Solid State Commun 101:747

    Article  ADS  Google Scholar 

  • Grimmeiss HG (1985) Deep energy levels in semiconductors. In: Chadi JD, Harrison WA (eds) Proceedings of the 17th international conference on the physics of semiconductors, San Francisco 1984. Springer, New York, pp 589–600

    Google Scholar 

  • Grimmeiss HG, Janzén E (1986) Chalcogen impurities in silicon. In: Pantelides ST (ed) Deep centers in semiconductors. Gordon and Breach, New York, pp 87–146

    Google Scholar 

  • Grimmeiss HG, Janzén E, Skarstam B (1980) Deep sulfur-related centers in silicon. J Appl Phys 51:4212

    Article  ADS  Google Scholar 

  • Guichar GM, Sébenne C, Proix F, Balkanski M (1972) Lowering the extrinsic photoconductivity threshold of Si:P. In: Proceedings of the11th international conference on the physics of semiconductors. PWN Polish Scientific Publishers, Warsaw, pp 877–881

    Google Scholar 

  • Haller EE, Hansen WL (1974) High resolution Fourier transform spectroscopy of shallow acceptors in ultra-pure germanium. Solid State Commun 15:687

    Article  ADS  Google Scholar 

  • Haller EE, Hansen WL, Goulding FS (1981) Physics of ultra-pure germanium. Adv Phys 30:93

    Article  ADS  Google Scholar 

  • Halsted RE (1967) Radiative recombination in the band edge region. In: Aven M, Prener JS (eds) Physics and chemistry of II-VI compounds. North Holland, Amsterdam, pp 383–431

    Google Scholar 

  • Halsted RE, Aven M (1965) Photoluminescence of defect-exciton complexes in II-VI compounds. Phys Rev Lett 14:64

    Article  ADS  Google Scholar 

  • Hasegawa H (1969) Effects of high magnetic fields on electronic states in semiconductors – the Rydberg series and the Landau levels. In: Haidemenakis ED (ed) Physics of solids in intense magnetic fields. Plenum Press, New York, pp 246–270

    Google Scholar 

  • Haug A (1972) Theoretical solid state physics. Pergamon, Oxford

    Google Scholar 

  • Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. Wiley, New York

    Google Scholar 

  • Haynes JR (1960) Experimental proof of the existence of a new electronic complex in silicon. Phys Rev Lett 4:361

    Article  ADS  Google Scholar 

  • Herzberg G (1937) Atomic spectra and atomic structure. Dover, New York

    Google Scholar 

  • Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101:944

    Google Scholar 

  • Hopfield JJ (1967) Radiative recombination at shallow centers. In: Thomas DG (ed) Proceedings of international conference on II-VI semiconducting compounds. Benjamin, New York, p 786

    Google Scholar 

  • Hopfield JJ, Thomas DG, Lynch RT (1966) Isoelectronic donors and acceptors. Phys Rev Lett 17:312

    Article  ADS  Google Scholar 

  • Horii K, Nisida Y (1970) Identification of 4p0 and 4p±1 of germanium donor from the Zeeman spectra. J Physical Soc Jpn 29:798

    Article  ADS  Google Scholar 

  • Jancu J-M, Scholz R, Beltram F, Bassani F (1998) Empirical spds* tight-binding calculation for cubic semiconductors: general method and material parameters. Phys Rev B 57:6493

    Article  ADS  Google Scholar 

  • Jansen RW, Sankey OF (1987) Trends in the energy levels and total energies of s p – valence interstitials in compound semiconductors – an ab initio tight-binding study for GaAs. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 813–816

    Google Scholar 

  • Kaplan R (1970) Far-infrared magnetooptical studies of semiconductors using Fourier spectroscopy and photoconductivity techniques. In: Haidemenakis D (ed) Optical properties of solids. Gordon & Breach, London, pp 301–330

    Google Scholar 

  • Kirkman RF, Stradling RA, Lin-Chung PJ (1978) An infrared study of the shallow acceptor states in GaAs. J Phys C 11:419

    Article  ADS  Google Scholar 

  • Kohn W (1957) Shallow impurity states in silicon and germanium. In: Seitz F, Turnbull D (eds) Solid state physics, vol 5. Academic Press, New York, pp 257–320

    Google Scholar 

  • Kopylov AA, Pikhtin AN (1978) Shallow impurity states and the free exciton binding energy in gallium phosphide. Solid State Commun 26:735

    Article  ADS  Google Scholar 

  • Kosicki BB, Paul W (1966) Evidence for quasilocalized states associated with high-energy conduction-band minima in semiconductors, particularly Se-doped GaSb. Phys Rev Lett 17:246

    Article  ADS  Google Scholar 

  • Kudlek G, Presser N, Pohl UW, Gutowski J, Lilja J, Kuusisto E, Imai K, Pessa M, Hingerl K, Sitter A (1992) Exciton complexes in ZnSe layers: a tool for probing the strain distribution. J Cryst Growth 117:309

    Article  ADS  Google Scholar 

  • Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450

    Article  ADS  Google Scholar 

  • Lancester G (1966) Electron spin resonance in semiconductors. Hilger & Watts, London

    Google Scholar 

  • Lipari NO, Baldereschi A (1978) Interpretation of acceptor spectra in semiconductors. Solid State Commun 25:665

    Article  ADS  Google Scholar 

  • Lund A, Shiotani M, Shimada S (2011) Principles and applications of ESR spectroscopy. Springer, Heidelberg/New York

    Book  Google Scholar 

  • Luttinger JM (1956) Quantum theory of cyclotron resonance in semiconductors: general theory. Phys Rev 102:1030

    Article  ADS  MATH  Google Scholar 

  • Luttinger JM, Kohn W (1955) Motion of electrons and holes in perturbed periodic fields. Phys Rev 97:869

    Article  ADS  MATH  Google Scholar 

  • Markham JJ (1966) F-centers in alkali halides. Academic Press, New York

    Google Scholar 

  • McMurray RE Jr (1985) Spectroscopy of positively charged multiple acceptors. Solid State Commun 53:1127

    Article  ADS  Google Scholar 

  • Merz JL (1968) Isoelectronic oxygen trap in ZnTe. Phys Rev 176:961

    Article  ADS  Google Scholar 

  • Merz JL, Nassau K, Shiever JW (1973) Pair spectra and shallow acceptors in ZnSe. Phys Rev B 8:1444

    Article  ADS  Google Scholar 

  • Moore WJ (1971) Magnetic field effects on the excitation spectra of neutral group II double acceptors in germanium. J Phys Chem Solid 32:93

    Article  ADS  Google Scholar 

  • Morita A, Nara H (1966) Chemical shifts of shallow donors levels in silicon. In: Hatoyama GM (ed) Proceedings of the 8th international conference on the physics of semiconductors, Kyoto, 1966, J Phys Soc Jpn Suppl 21, pp 234–238

    Google Scholar 

  • Narita S (1985) Effects of uniaxial stress and magnetic field of D-center in germanium and silicon. Solid State Commun 53:1115

    Article  ADS  Google Scholar 

  • Onton A (1971) Donor-electron transitions between states associated with the X1c and X3c conduction-band minima in GaP. Phys Rev B 4:4449

    Article  ADS  Google Scholar 

  • Onton A, Fisher P, Ramdas AK (1967) Spectroscopic investigation of group-III acceptor states in silicon. Phys Rev 163:686

    Article  ADS  Google Scholar 

  • Onton A, Yacoby Y, Chicotka RJ (1972) Direct optical observation of the subsidiary X1c conduction band and its donor levels in InP. Phys Rev Lett 28:966

    Article  ADS  Google Scholar 

  • Pajot B (2009) Optical absorption of impurities and defects in semiconducting crystals, I. Hydrogen-like Centres. Springer, Berlin

    Google Scholar 

  • Pantelides ST (1975) Theory of impurities in semiconductors. In: Queisser HJ (ed) Festkörperprobleme/Advances in solid state physics, vol 15. Vieweg, Braunschweig, pp 149–181

    Google Scholar 

  • Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797

    Article  ADS  Google Scholar 

  • Pantelides ST (ed) (1986) Deep centers in semiconductors. Gordon and Breach, New York

    Google Scholar 

  • Pantelides ST (1987) The effect of hydrogen on shallow dopants in crystalline silicon. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 987–990

    Google Scholar 

  • Pantelides ST, Sah CT (1974) Theory of localized states in semiconductors. II. The pseudo impurity theory application to shallow and deep donors in silicon. Phys Rev B 10:638

    Article  ADS  Google Scholar 

  • Phillips JC, Kleinman L (1959) New method for calculating wave functions in crystals and molecules. Phys Rev 116:287

    Article  ADS  MATH  Google Scholar 

  • Pohl UW, Busse W (1989) Probability tables for small clusters of impurity atoms in sc, bcc and fcc lattices assuming long range interaction. J Chem Phys 90:6877

    Article  ADS  Google Scholar 

  • Pohl UW, Wiesmann D, Kudlek GH, Litzenburger B, Hoffmann A (1996) Magneto-optical investigation of the shallow lithium acceptor in zinc selenide. J Cryst Growth 159:414

    Article  ADS  Google Scholar 

  • Pollak FH (1965) Effect of uniaxial compression on impurity conduction in p-germanium. Phys Rev 138:A618

    Article  ADS  Google Scholar 

  • Pollmann J (1976) Exciton ground-state in strongly anisotropic crystals. Solid State Commun 19:361

    Article  ADS  Google Scholar 

  • Poole CP Jr (1983) Electron spin resonance – a comprehensive treatise on experimental techniques, 2nd edn. Wiley, New York

    Google Scholar 

  • Rashba EI, Gurgenishvilli GE (1962) To the theory of the edge absorption in semiconductors. Sov Phys Solid State 4:759

    Google Scholar 

  • Reiss H, Fuller CS, Morin FJ (1956) Chemical interactions among defects in germanium and silicon. Bell Sys Tech J 35:535

    Article  Google Scholar 

  • Ren SY, Dow JD, Wolford DJ (1982) Pressure dependence of deep levels in GaAs. Phys Rev B 25:7661

    Article  ADS  Google Scholar 

  • Reuszer JH, Fisher P (1964) An optical determination of the ground-state splittings of group V impurities in germanium. Phys Rev 135:A1125

    Article  ADS  Google Scholar 

  • Rodriguez S, Fisher P, Barra F (1972) Spectroscopic study of the symmetries and deformation-potential constants of singly ionized zinc in germanium, theory. Phys Rev B 5:2219

    Article  ADS  Google Scholar 

  • Roessler DM (1970) Luminescence in tellurium-doped cadmium sulfide. J Appl Phys 41:4589

    Article  ADS  Google Scholar 

  • Rotenberg M, Stein J (1969) Use of asymptotically correct wave function for three-body Rayleigh-Ritz calculations. Phys Rev 182:1

    Article  ADS  Google Scholar 

  • Sah CT, Pantelides ST (1972) Theory of impurity states in semiconductors. Solid State Commun 11:1713

    Article  ADS  Google Scholar 

  • Sak J (1971) Perturbation theory for a bound polaron. Phys Rev B 3:3356

    Article  ADS  Google Scholar 

  • Schechter D (1975) Pseudopotential theory of shallow-donor ground states II. Phys Rev B 11:5043

    Article  ADS  Google Scholar 

  • Schneider J (1967) Electron spin resonance of defect centers in II-VI cemiconductors. In: Thomas DG (ed) II-VI semiconducting compounds. Benjamin, New York, p 40

    Google Scholar 

  • Schneider J (1982) ESR of defects in III–V compounds. MRS Proc 14:225

    Article  Google Scholar 

  • Shinada M, Sugano S (1966) Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J Physical Soc Jpn 21:1936

    Article  ADS  Google Scholar 

  • Skettrup T, Suffczynski M, Gorzkowski W (1971) Properties of excitons bound to ionized donors. Phys Rev B 4:512

    Article  ADS  Google Scholar 

  • Soepangkat HP, Fisher P, Rodriguez S (1972) g-factors of boron in germanium. Phys Lett A 39:379

    Article  ADS  Google Scholar 

  • Sommerfeld A (1950) Atombau und Spektrallinien, vol I. Vieweg, Braunschweig (Atomic structure and spectral lines, in German)

    Google Scholar 

  • Spaeth J-M (1986) Application of optically detected magnetic resonance to the characterization of point defects in semiconductors. In: von Bardeleben HJ (ed) Proceedings of the 14th international conference on defects in semiconductors. Mater Sci Forum 10–12. Trans Tech Publications, Switzerland, pp 505–514

    Google Scholar 

  • Stark J (1914) Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien, I Quereffekt. Ann d Phys 43:965 (Observations on the effect of an electric field on spectral lines, I transversal effect, in German)

    Google Scholar 

  • Stark J, Wendt G (1914) Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien, II Längseffekt. Ann d Phys 43:983 (Observations on the effect of an electric field on spectral lines, II longitudinal effect, in German)

    Google Scholar 

  • Stoneham AM (1975) Theory of defects in solids. Claredon, Oxford, UK

    MATH  Google Scholar 

  • Stoneham AM (1986) Hot topics: theory. In: von Bardeleben HJ (ed) Proceedings of the 14th international conference on defects in semiconductors. Mater Sci Forum 10–12. Trans Tech Publications, Switzerland, pp 9–19

    Google Scholar 

  • Taguchi T, Ray B (1983) Point defects in II–VI compounds. Progr Cryst Growth Charact 6:103

    Article  Google Scholar 

  • Thewalt MLW, Labrie D, Timusk T (1985) The far infrared absorption spectra of bound excitons in silicon. Solid State Commun 53:1049

    Article  ADS  Google Scholar 

  • Thomas DG, Hopfield JJ (1962) Optical properties of bound exciton complexes in cadmium sulfide. Phys Rev 128:2135

    Article  ADS  Google Scholar 

  • Thomas DG, Hopfield JJ (1966) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev 150:680

    Article  ADS  Google Scholar 

  • Thomas DG, Gershenzon M, Trumbore FA (1964) Pair spectra and “edge” emission in gallium phosphide. Phys Rev 133:A269

    Article  ADS  Google Scholar 

  • Thomas DG, Hopfield JJ, Frosch CJ (1965) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev Lett 15:857

    Article  ADS  Google Scholar 

  • Torres VJB, Oberg S, Jones R (1997) Theory of nitrogen-hydrogen complexes in GaP. In: Davies G, Nazaré MH (eds) Proceedings of the 19th international conference on defect in Semiconductors. Mater Sci Forum 258–263. Trans Tech Publications, Switzerland, pp 1063–1067

    Google Scholar 

  • Trumbore FA, Gershenzon M, Thomas DG (1966) Luminescence due to the isoelectronic substitution of bismuth for phosphorus in gallium phosphide. Appl Phys Lett 9:4

    Article  ADS  Google Scholar 

  • Ulbrich RG (1978) Low density photoexcitation phenomena in semiconductors: aspects of theory and experiment. Solid State Electron 21:51

    Article  ADS  Google Scholar 

  • van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Claredon, Oxford, UK

    MATH  Google Scholar 

  • Vul’ AY, Bir GL, Shmartsev YV (1971) Donor states of sulfur in gallium antimonide. Sov Phys Semicond 4:2005

    Google Scholar 

  • Wagner P, Holm C, Sirtl E, Oeder R, Zulehner W (1984) Chalcogens as point defects in silicon. In: Grosse P (ed) Festkörperprobleme/Advances in solid state physics, vol 24. Vieweg, Braunschweig, pp 191–228

    Google Scholar 

  • Watkins GD (1977) Lattice defects in II-VI compounds. In: Urli NB, Corbett JW (eds) Proceedings of international conference on radiation effects in semiconductors, vol 31, Institute of physics conference series. Institute of Physics, Bristol, p 95

    Google Scholar 

  • White JJ (1967) Effects of external and internal electric fields on the boron acceptor states in silicon. Can J Phys 45:2695

    Article  ADS  Google Scholar 

  • Williams F (1968) Donor-acceptor pairs in semiconductors. Phys Status Solidi 25:493

    Article  Google Scholar 

  • Wilson DK, Feher G (1961) Electron spin resonance experiments on donors in silicon. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes. Phys Rev 124:1068

    Article  ADS  Google Scholar 

  • Wolford DJ (1987) Electronic states in semiconductors under high pressures. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 1115–1123

    Google Scholar 

  • Wolford DJ, Hsu WY, Dow JD, Streetman BG (1979) Nitrogen trap in the semiconductor alloys GaAs1−xPx and AlxGa1−xAs. J Lumin 18–19:863

    Article  Google Scholar 

  • Zeeman P (1897) Doublets and triplets in the spectrum produced by external magnetic forces. Philos Mag 44:55; and: Philos Mag 44:255

    Article  Google Scholar 

  • Zimmermann H, Boyn R, Lehr MU, Schulz H-J, Rudolph P, Kornac J-T (1994) The Zeeman effect on bound-exciton states of indium-related complex centres in CdTe. Semicond Sci Technol 9:1598

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2017). Shallow-Level Centers. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_18-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_18-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Shallow-Level Centers
    Published:
    17 June 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_18-4

  2. Shallow-Level Centers
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_18-3

  3. Shallow-Level Centers
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_18-2

  4. Original

    Shallow-Level Centers
    Published:
    22 July 2016

    DOI: https://doi.org/10.1007/978-3-319-06540-3_18-1