Partial Least Squares Structural Equation Modeling

  • Marko Sarstedt
  • Christian M. Ringle
  • Joseph F. Hair
Living reference work entry

Abstract

Partial least squares structural equation modeling (PLS-SEM) has become a popular method for estimating (complex) path models with latent variables and their relationships. Building on an introduction of the fundamentals of measurement and structural theory, this chapter explains how to specify and estimate path models using PLS-SEM. Complementing the introduction of the PLS-SEM method and the description of how to evaluate analysis results, the chapter also offers an overview of complementary analytical techniques. An application of the PLS-SEM method to a well-known corporate reputation model using the SmartPLS 3 software illustrates the concepts.

Keywords

Partial least squares PLS PLS path modeling PLS-SEM SEM Variance-based structural equation modeling 

Notes

Acknowledgment

This chapter uses the statistical software SmartPLS 3 (http://www.smartpls.com). Ringle acknowledges a financial interest in SmartPLS.

References

  1. Aaker, D. A. (1991). Managing brand equity: Capitalizing on the value of a brand name. New York: Free Press.Google Scholar
  2. Aguirre-Urreta, M. I., & Rönkkö, M. (2017). Statistical inference with PLSc using bootstrap confidence intervals. MIS Quarterly, forthcoming.Google Scholar
  3. Akter, S., Wamba, S. F., & Dewan, S. (2017). Why PLS-SEM is suitable for complex modeling? An empirical illustration in big data analytics quality. Production Planning & Control, 28(11-12), 1011–1021.Google Scholar
  4. Ali, F., Rasoolemanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2017). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. International Journal of Contemporary Hospitality Management, forthcoming.Google Scholar
  5. Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161.CrossRefGoogle Scholar
  6. Becker, J.-M., & Ismail, I. R. (2016). Accounting for sampling weights in PLS path modeling: Simulations and empirical examples. European Management Journal, 34(6), 606–617.CrossRefGoogle Scholar
  7. Becker, J.-M., Rai, A., & Rigdon, E. E. (2013a). Predictive validity and formative measurement in structural equation modeling: Embracing practical relevance. In: 2013 Proceedings of the international conference on information systems, Milan.Google Scholar
  8. Becker, J.-M., Rai, A., Ringle, C. M., & Völckner, F. (2013b). Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly, 37(3), 665–694.Google Scholar
  9. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
  10. Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.CrossRefGoogle Scholar
  11. Bollen, K. A. (2011). Evaluating effect, composite, and causal indicators in structural equation models. MIS Quarterly, 35(2), 359–372.Google Scholar
  12. Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), 265–284.CrossRefGoogle Scholar
  13. Bollen, K. A., & Diamantopoulos, A. (2017). In defense of causal–formative indicators: A minority report. Psychological Methods, forthcoming.Google Scholar
  14. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305–314.CrossRefGoogle Scholar
  15. Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203–219.CrossRefGoogle Scholar
  16. Cenfetelli, R. T., & Bassellier, G. (2009). Interpretation of formative measurement in information systems research. MIS Quarterly, 33(4), 689–708.Google Scholar
  17. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). Mahwah: Erlbaum.Google Scholar
  18. Chin, W. W. (2010). How to write up and report PLS analyses. In: V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II, pp. 655–690). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  19. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217.CrossRefGoogle Scholar
  20. Chou, C.-P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44(2), 347–357.CrossRefGoogle Scholar
  21. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  22. Coltman, T., Devinney, T. M., Midgley, D. F., & Venaik, S. (2008). Formative versus reflective measurement models: Two applications of formative measurement. Journal of Business Research, 61(12), 1250–1262.CrossRefGoogle Scholar
  23. Diamantopoulos, A. (2006). The error term in formative measurement models: Interpretation and modeling implications. Journal of Modeling in Management, 1(1), 7–17.CrossRefGoogle Scholar
  24. Diamantopoulos, A. (2011). Incorporating formative measures into covariance-based structural equation models. MIS Quarterly, 35(2), 335–358.Google Scholar
  25. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269–277.CrossRefGoogle Scholar
  26. Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449.CrossRefGoogle Scholar
  27. Dijkstra, T. K. (2010). Latent variables and indices: Herman world’s basic design and partial least squares. In V. Esposito Vinzi, W. W. Chin, J. Henseler, H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II, pp. 23–46). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  28. Dijkstra, T. K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: Best fitting proper indices and other composites. Quality & Quantity, 45(6), 1505–1518.CrossRefGoogle Scholar
  29. Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81(1), 10–23.CrossRefGoogle Scholar
  30. Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297–316.CrossRefGoogle Scholar
  31. Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear structural equation models. Psychometrika, 79(4), 585–604.CrossRefGoogle Scholar
  32. do Valle, P. O., & Assaker, G. (2016). Using partial least squares structural equation modeling in tourism research: A review of past research and recommendations for future applications. Journal of Travel Research, 55(6), 695–708.CrossRefGoogle Scholar
  33. Eberl, M. (2010). An application of PLS in multi-group analysis: The need for differentiated corporate-level marketing in the mobile communications industry. In: V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II, pp. 487–514). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  34. Eberl, M., & Schwaiger, M. (2005). Corporate reputation: Disentangling the effects on financial performance. European Journal of Marketing, 39(7/8), 838–854.CrossRefGoogle Scholar
  35. Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155–174.CrossRefGoogle Scholar
  36. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
  37. Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.) (2010). Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  38. Evermann, J., & Tate, M. (2016). Assessing the predictive performance of structural equation model estimators. Journal of Business Research, 69(10), 4565–4582.CrossRefGoogle Scholar
  39. Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron: University of Akron Press.Google Scholar
  40. Fornell, C. G., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.CrossRefGoogle Scholar
  41. Garson, G. D. (2016). Partial least squares regression and structural equation models. Asheboro: Statistical Associates.Google Scholar
  42. Geisser, S. (1974). A predictive approach to the random effects model. Biometrika, 61(1), 101–107.CrossRefGoogle Scholar
  43. Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does PLS have advantages for small sample size or non-normal data? MIS Quarterly, 36(3), 981–1001.Google Scholar
  44. Götz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of structural equation models using the partial least squares (PLS) approach. In: V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II, pp. 691–711). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  45. Grace, J. B., & Bollen, K. A. (2008). Representing general theoretical concepts in structural equation models: The role of composite variables. Environmental and Ecological Statistics, 15(2), 191–213.CrossRefGoogle Scholar
  46. Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611–642.Google Scholar
  47. Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249.CrossRefGoogle Scholar
  48. Haenlein, M., & Kaplan, A. M. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297.CrossRefGoogle Scholar
  49. Hahn, C., Johnson, M. D., Herrmann, A., & Huber, F. (2002). Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review, 54(3), 243–269.Google Scholar
  50. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–151.CrossRefGoogle Scholar
  51. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012a). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340.CrossRefGoogle Scholar
  52. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012b). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433.CrossRefGoogle Scholar
  53. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1–2), 1–12.CrossRefGoogle Scholar
  54. Hair, J. F., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458.CrossRefGoogle Scholar
  55. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017b). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks: Sage.Google Scholar
  56. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017c). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, forthcoming.Google Scholar
  57. Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage.Google Scholar
  58. Helm, S., Eggert, A., & Garnefeld, I. (2010). Modelling the impact of corporate reputation on customer satisfaction and loyalty using PLS. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer Handbooks of Computational Statistics Series, Vol. II, pp. 515–534). Heidelberg/Dordrecht/London/New York: Springer.Google Scholar
  59. Henseler, J. (2010). On the convergence of the partial least squares path modeling algorithm. Computational Statistics, 25(1), 107–120.CrossRefGoogle Scholar
  60. Henseler, J. (2017). Using variance-based structural equation modeling for empirical advertising research at the interface of design and behavioral research. Journal of Advertising, 46(1), 178–192.CrossRefGoogle Scholar
  61. Henseler, J., & Chin, W. W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling, 17(1), 82–109.CrossRefGoogle Scholar
  62. Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580.CrossRefGoogle Scholar
  63. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), Advances in international marketing (Vol. 20, pp. 277–320). Bingley: Emerald.CrossRefGoogle Scholar
  64. Henseler, J., Fassott, G., Dijkstra, T. K., & Wilson, B. (2012a). Analyzing quadratic effects of formative constructs by means of variance-based structural equation modelling. European Journal of Information Systems, 21(1), 99–112.CrossRefGoogle Scholar
  65. Henseler, J., Ringle, C. M., & Sarstedt, M. (2012b). Using partial least squares path modeling in international advertising research: Basic concepts and recent issues. In S. Okazaki (Ed.), Handbook of research in international advertising (pp. 252–276). Cheltenham: Edward Elgar Publishing.Google Scholar
  66. Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about partial least squares: Comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17(2), 182–209.CrossRefGoogle Scholar
  67. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.CrossRefGoogle Scholar
  68. Henseler, J., Hubona, G. S., & Ray, P. A. (2016a). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 1–19.CrossRefGoogle Scholar
  69. Henseler, J., Ringle, C. M., & Sarstedt, M. (2016b). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431.CrossRefGoogle Scholar
  70. Houston, M. B. (2004). Assessing the validity of secondary data proxies for marketing constructs. Journal of Business Research, 57(2), 154–161.CrossRefGoogle Scholar
  71. Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453.CrossRefGoogle Scholar
  72. Hui, B. S., & Wold, H. O. A. (1982). Consistency and consistency at large of partial least squares estimates. In K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observation, part II (pp. 119–130). Amsterdam: North Holland.Google Scholar
  73. Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426.CrossRefGoogle Scholar
  74. Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 255–284). New York: Seminar Press.Google Scholar
  75. Jöreskog, K. G., & Wold, H. O. A. (1982). The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects. In H. O. A. Wold & K. G. Jöreskog (Eds.), Systems under indirect observation, part I (pp. 263–270). Amsterdam: North-Holland.Google Scholar
  76. Kaufmann, L., & Gaeckler, J. (2015). A structured review of partial least squares in supply chain management research. Journal of Purchasing and Supply Management, 21(4), 259–272.CrossRefGoogle Scholar
  77. Kock, N., & Hadaya, P. (2017). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, forthcoming.Google Scholar
  78. Latan, H., & Noonan, R. (Eds.). (2017). Partial least squares structural equation modeling: Basic concepts, methodological issues and applications. Heidelberg: Springer.Google Scholar
  79. Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), 305–328.CrossRefGoogle Scholar
  80. Lei, P.-W., & Wu, Q. (2012). Estimation in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 164–179). New York: Guilford Press.Google Scholar
  81. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.CrossRefGoogle Scholar
  82. Marcoulides, G. A., & Chin, W. W. (2013). You write, but others read: Common methodological misunderstandings in PLS and related methods. In H. Abdi, W. W. Chin, V. Esposito Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods (Springer Proceedings in Mathematics & Statistics, Vol. 56, pp. 31–64). New York: Springer.Google Scholar
  83. Marcoulides, G. A., & Saunders, C. (2006). PLS: A silver bullet? MIS Quarterly, 30(2), III–IIX.Google Scholar
  84. Marcoulides, G. A., Chin, W. W., & Saunders, C. (2009). Foreword: A critical look at partial least squares modeling. MIS Quarterly, 33(1), 171–175.Google Scholar
  85. Marcoulides, G. A., Chin, W. W., & Saunders, C. (2012). When imprecise statistical statements become problematic: A response to Goodhue, Lewis, and Thompson. MIS Quarterly, 36(3), 717–728.Google Scholar
  86. Mateos-Aparicio, G. (2011). Partial least squares (PLS) methods: Origins, evolution, and application to social sciences. Communications in Statistics – Theory and Methods, 40(13), 2305–2317.CrossRefGoogle Scholar
  87. McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–270.CrossRefGoogle Scholar
  88. Nitzl, C. (2016). The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development. Journal of Accounting Literature, 37, 19–35.CrossRefGoogle Scholar
  89. Nitzl, C., & Chin, W. W. (2017). The case of partial least squares (PLS) path modeling in managerial accounting. Journal of Management Control, 28(2), 137–156.Google Scholar
  90. Nitzl, C., Roldán, J. L., & Cepeda Carrión, G. (2016). Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Industrial Management & Data Systems, 119(9), 1849–1864.CrossRefGoogle Scholar
  91. Noonan, R., & Wold, H. O. A. (1982). PLS path modeling with indirectly observed variables: A comparison of alternative estimates for the latent variable. In K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observations: Part II (pp. 75–94). Amsterdam: North-Holland.Google Scholar
  92. Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory (3rd ed.). New York: McGraw Hill.Google Scholar
  93. Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7(4), 557–595.CrossRefGoogle Scholar
  94. Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480.CrossRefGoogle Scholar
  95. Raithel, S., & Schwaiger, M. (2015). The effects of corporate reputation perceptions of the general public on shareholder value. Strategic Management Journal, 36(6), 945–956.CrossRefGoogle Scholar
  96. Raithel, S., Sarstedt, M., Scharf, S., & Schwaiger, M. (2012). On the value relevance of customer satisfaction. Multiple drivers and multiple markets. Journal of the Academy of Marketing Science, 40(4), 509–525.CrossRefGoogle Scholar
  97. Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2016). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis. Singapore: Pearson.Google Scholar
  98. Reinartz, W. J., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344.CrossRefGoogle Scholar
  99. Richter, N. F., Sinkovics, R. R., Ringle, C. M., & Schlägel, C. (2016a). A critical look at the use of SEM in international business research. International Marketing Review, 33(3), 376–404.CrossRefGoogle Scholar
  100. Richter, N. F., Cepeda, G., Roldán, J. L, Ringle, C. M. (2016b) European management research using partial least squares structural equation modeling (PLS-SEM). European Management Journal 34 (6):589-597Google Scholar
  101. Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5–6), 341–358.CrossRefGoogle Scholar
  102. Rigdon, E. E. (2013a). Partial least squares path modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course, seconded (Vol. 1). Charlotte: Information Age Publishing.Google Scholar
  103. Rigdon, E. E. (2013b). Partial least squares path modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling. A second course (2nd ed., pp. 81–116). Charlotte: Information Age Publishing.Google Scholar
  104. Rigdon, E. E. (2014a). Comment on “Improper use of endogenous formative variables”. Journal of Business Research, 67(1), 2800–2802.CrossRefGoogle Scholar
  105. Rigdon, E. E. (2014b). Rethinking partial least squares path modeling: Breaking chains and forging ahead. Long Range Planning, 47(3), 161–167.CrossRefGoogle Scholar
  106. Rigdon, E. E. (2016). Choosing PLS path modeling as analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598–605.CrossRefGoogle Scholar
  107. Rigdon, E. E., Becker, J.-M., Rai, A., Ringle, C. M., Diamantopoulos, A., Karahanna, E., Straub, D., & Dijkstra, T. K. (2014). Conflating antecedents and formative indicators: A comment on Aguirre-Urreta and Marakas. Information Systems Research, 25(4), 780–784.CrossRefGoogle Scholar
  108. Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM And PLS-SEM. Five perspectives and five recommendations. Marketing ZFP – Journal of Research and Management, forthcoming.Google Scholar
  109. Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865–1886.CrossRefGoogle Scholar
  110. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly, 36(1), iii–xiv.Google Scholar
  111. Ringle, C. M., Sarstedt, M., Schlittgen, R., & Taylor, C. R. (2013). PLS path modeling and evolutionary segmentation. Journal of Business Research, 66(9), 1318–1324.CrossRefGoogle Scholar
  112. Ringle, C. M., Sarstedt, M., & Schlittgen, R. (2014). Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectrum, 36(1), 251–276.CrossRefGoogle Scholar
  113. Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-based structural equation modeling: Guidelines for using partial least squares in information systems research. In M. Mora, O. Gelman, A. L. Steenkamp, & M. Raisinghani (Eds.), Research methodologies, innovations and philosophies in software systems engineering and information systems (pp. 193–221). Hershey: IGI Global.CrossRefGoogle Scholar
  114. Sarstedt, M., & Mooi, E. A. (2014). A concise guide to market research: The process, data, and methods using IBM SPSS statistics. Heidelberg: Springer.CrossRefGoogle Scholar
  115. Sarstedt, M., Becker, J.-M., Ringle, C. M., & Schwaiger, M. (2011a). Uncovering and treating unobserved heterogeneity with FIMIX-PLS: Which model selection criterion provides an appropriate number of segments? Schmalenbach Business Review, 63(1), 34–62.Google Scholar
  116. Sarstedt, M., Henseler, J., & Ringle, C. M. (2011b). Multi-group analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In M. Sarstedt, M. Schwaiger, & C. R. Taylor (Eds.), Advances in international marketing (Vol. 22, pp. 195–218). Bingley: Emerald.Google Scholar
  117. Sarstedt, M., Wilczynski, P., & Melewar, T. C. (2013). Measuring reputation in global markets – A comparison of reputation measures’ convergent and criterion validities. Journal of World Business, 48(3), 329–339.CrossRefGoogle Scholar
  118. Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115.CrossRefGoogle Scholar
  119. Sarstedt, M., Diamantopoulos, A., Salzberger, T., & Baumgartner, P. (2016a). Selecting single items to measure doubly-concrete constructs: A cautionary tale. Journal of Business Research, 69(8), 3159–3167.CrossRefGoogle Scholar
  120. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016b). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998–4010.CrossRefGoogle Scholar
  121. Sarstedt, M., Bengart, P., Shaltoni, A. M., & Lehmann, S. (2017). The use of sampling methods in advertising research: A gap between theory and practice. International Journal of Advertising, forthcoming.Google Scholar
  122. Schlittgen, R., Ringle, C. M., Sarstedt, M., & Becker, J.-M. (2016). Segmentation of PLS path models by iterative reweighted regressions. Journal of Business Research, 69(10), 4583–4592.CrossRefGoogle Scholar
  123. Schloderer, M. P., Sarstedt, M., & Ringle, C. M. (2014). The relevance of reputation in the nonprofit sector: The moderating effect of socio-demographic characteristics. International Journal of Nonprofit and Voluntary Sector Marketing, 19(2), 110–126.CrossRefGoogle Scholar
  124. Schwaiger, M. (2004). Components and parameters of corporate. Reputation: An empirical study. Schmalenbach Business Review, 56(1), 46–71.Google Scholar
  125. Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24(2), 148–169.CrossRefGoogle Scholar
  126. Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.CrossRefGoogle Scholar
  127. Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: Evaluating the predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.CrossRefGoogle Scholar
  128. Sosik, J. J., Kahai, S. S., & Piovoso, M. J. (2009). Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group & Organization Management, 34(1), 5–36.CrossRefGoogle Scholar
  129. Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social media analytics. Business & Information Systems Engineering, 6(2), 89–96.Google Scholar
  130. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36(2), 111–147.Google Scholar
  131. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.CrossRefGoogle Scholar
  132. Westland, J. C. (2015). Partial least squares path analysis. In Structural equation models: From paths to networks (pp. 23–46). Cham: Springer International Publishing.Google Scholar
  133. Willaby, H. W., Costa, D. S. J., Burns, B. D., MacCann, C., & Roberts, R. D. (2015). Testing complex models with small sample sizes: A historical overview and empirical demonstration of what partial least squares (PLS) can offer differential psychology. Personality and Individual Differences, 84, 73–78.CrossRefGoogle Scholar
  134. Wold H. O. A. (1975). Path models with latent variables: The NIPALS approach. In H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative sociology: International perspectives on mathematical and statistical modeling (pp. 307–357). New York: Academic.Google Scholar
  135. Wold H. O. A. (1980). Model construction and evaluation when theoretical knowledge is scarce: Theory and application of PLS. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). New York: Academic.Google Scholar
  136. Wold H. O. A. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observations: Part II (pp. 1–54). Amsterdam: North-Holland.Google Scholar
  137. Wold H. O. A. (1985). Partial least squares. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (Vol. 6, pp. 581–591). New York: Wiley.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marko Sarstedt
    • 1
    • 3
  • Christian M. Ringle
    • 2
    • 3
  • Joseph F. Hair
    • 4
  1. 1.Otto-von-Guericke UniversityMagdeburgGermany
  2. 2.Hamburg University of Technology (TUHH)HamburgGermany
  3. 3.Faculty of Business and LawUniversity of NewcastleCallaghanAustralia
  4. 4.University of South AlabamaMobileUSA

Personalised recommendations