Skip to main content

Processing Techniques and Process Flows with Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon
  • 111 Accesses

Abstract

Porosified silicon wafers or powders from electrochemical etching of bulk silicon, or from silica reduction, often require a series of additional processing steps, prior to use. In this expanded review a compendium of over 70 processing techniques is provided, linking all of them to either dedicated process reviews or related chapters in the handbook. The processing techniques are grouped into 8 processing functions: patterning, size reduction, size classification, drying, passivation, coating, pore impregnation and skeleton doping. Typical process flows are illustrated for wafer substrates, membranes, particles and composites, giving examples of where the choice and order of processing steps can be important. Examples are also given of processing topics yet to be widely explored with porous silicon, but which could become important for some of the emerging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balaguer M, Pastor E, Bychto L, Mirand MA, Matveeva E, Chirvony VS (2008) Durability and photophysical properties of surfactant covered porous silicon particles in aqueous suspensions. Phys Status Solidi A 205(11):2585–2588

    Article  Google Scholar 

  • Bleidiessel R et al (2008) Supercritical fluid deposition of metals for micro electromechanical systems. In: Proceedings of 11th European meeting on supercritical fluids, Barcelona, 4–7 May, pp 1–6

    Google Scholar 

  • Bleier A (1983a) The roles of van der Waals forces in determining the wetting and dispersion properties of silicon powder. J Phys Chem 87(18):3493–3500

    Article  Google Scholar 

  • Bleier A (1983b) Fundamentals of preparing suspensions of silicon and related ceramic powders. J Am Ceram Soc 66(5):79–81

    Article  Google Scholar 

  • Bykov YV, Rybakov KI, Semenov VE (2001) High-temperature microwave processing of materials. J Phys D Appl Phys 34(13):55–75

    Article  Google Scholar 

  • Chiappini C et al (2010) Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 11(5):1029–1035

    Article  Google Scholar 

  • Conde Y, Despois J-F, Goodall R, Marmottant A, Salvo A, San Marchi C, Mortensen A (2006) Replication processing of highly porous materials. Adv Eng Mater 8(9):795–803

    Article  Google Scholar 

  • Cooper AI (2003) Porous materials and supercritical fluids. Adv Mater 15(13):1049

    Article  Google Scholar 

  • Duarte ARC, Mano JF, Reis RL (2009) Supercritical fluids in biomedical and tissue engineering applications: a review. Int Mater Rev 54(4):214

    Article  Google Scholar 

  • Gongalsky MB, Kharin AY, Osminkina LA, Timoshenko VY, Jeong J, Lee H, Chung BH (2012) Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Res Lett 7(446):1–7

    Google Scholar 

  • Heinrich JL, Curtis CL, Credo GM, Sailor MJ, Kavanagh KL (1992) Luminescent colloidal silicon suspensions from porous silicon. Science 255(5040):66–68

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  Google Scholar 

  • Intartaglia R, Bagga K, Brandi F (2014) Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt Express 22(3):3117–3227

    Article  Google Scholar 

  • Jin L, Oya T, Tamekuni S, Watanabe M, Kondoh E, Gelloz B (2014) Copper deposition in microporous silicon using supercritical fluid. Thin Solid Films 567:82–86

    Article  Google Scholar 

  • Kale PG, Pratibha S, Solanki CS (2012) Synthesis and characterization of silicon nanoparticles obtained on sonication of porous silicon multilayer films. J Nanopart Res 17:13–25

    Article  Google Scholar 

  • Kerkar AV, RJM H, Feke DL (1990) Steric stabilization of nonaqueous silicon slips: I. Control of particle agglomeration and packing. J Am Ceram Soc 73(10):2879–2885

    Article  Google Scholar 

  • Kompan ME, Shabanov IY (1994) Quantum-size effects in fragments of porous silicon. AIP Phys Solid State 36(8):1063–7834

    Google Scholar 

  • Koynov S, Pereira RN, Crnolatac I, Kovalev D, Muygen A, Chinovy V, Stutzman M, de Witte P (2011) Purification of nano porous silicon for biomedical applications. Adv Eng Mater 13(6):B225–B223

    Article  Google Scholar 

  • Laiho R, Pavolv A (1995) Preparation of porous silicon films by laser ablation. Thin Solid Films 255(1-2):9–11

    Article  Google Scholar 

  • Lehto VP, Riikonen J (2014) Drug loading and characterisation of porous silicon materials. In: Santos HA (ed) Porous silicon for biomedical applications. Woodhead Publishing, Cambridge, UK, pp 337–355

    Chapter  Google Scholar 

  • Lin JC, Tsai WC, Lee WS (2006) The improved electrical contact between a metal and porous silicon by deposition using a supercritical fluid. Nanotechnology 17(12):2968

    Article  Google Scholar 

  • Loni A (1997) Capping of porous silicon. In: Canham LT (ed) Properties of porous silicon. IEE Press, London, pp 51–58

    Google Scholar 

  • Mattei G, Valentini V (2003) In-situ functionalization of porous silicon during the electrochemical formation process in ethanoic hydrofluoric acid solution. J Am Chem Soc 125:9608–9609

    Article  Google Scholar 

  • Nakamura T, Yuan Z, Adachi S (2014) High yield preparation of blue emitting colloidal Si nanocrystals by selective laser ablation of porous silicon in liquid. Nanotechnology 25(27):275602

    Article  Google Scholar 

  • Omae S, Minemato T, Murozono M et al (2006) Crystal growth mechanism of spherical silicon fabricated by dropping method. Jpn J Appl Phys 45:3577-3580

    Google Scholar 

  • Park JH, Gu L, von Maltzhan G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in-vivo applications. Nat Mater 8:331–336

    Article  Google Scholar 

  • Petit A, Delmotte M, Loupy A, Chazalviel JN, Ozanam F, Boukherroub R (2008) Microwave effects on chemical functionalization of hydrogen terminated porous silicon nanostructurer. J Phys Chem 112(42):16622–16628

    Google Scholar 

  • Small JC, Hieu MD, Siegel JL, Crepinsek AJ, Neal TA, Althoff AA, Line NS, Porter LA (2016) Alkyl functionalization of porous silicon via multimode microwave assisted hydrosilylation. Polyhedron 114:225–231

    Article  Google Scholar 

  • Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789

    Article  Google Scholar 

  • Thakur M, Sinsabaugh SL, Isaacson MJ, Wong MS, Biswal SL (2012) Inexpensive method for producing macroporous silicon particulates with pyrolyzed polyacrylonitrile for lithium ion batteries. Nat Sci Rep 2:795

    Article  Google Scholar 

  • Valenta J, Janda P, Dohnalova K, Niznanasky D, Vacha F, Linnros J (2005) Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt Mater 27:1046–1049

    Article  Google Scholar 

  • Valentini V, Mattei G, Cataruzza F, Flamini A (2007) Two-steps functionalization process to extend the novel in-situ porous silicon formation functionalization method. Phys Status Solidi C 4(6):2044–2048

    Article  Google Scholar 

  • Wang Q, Ni H, Pietzsch A, Hennies F, Bao Y, Chao Y (2011) Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J Nanopart Res 13:405–413

    Article  Google Scholar 

  • Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scripta Mat 45:1147–1153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Canham, L. (2018). Processing Techniques and Process Flows with Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_53-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_53-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Processing Techniques and Process Flows with Porous Silicon
    Published:
    07 December 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_53-3

  2. Typical Processing Steps with Porous Silicon
    Published:
    11 July 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_53-2

  3. Original

    Typical Processing Steps with Porous Silicon
    Published:
    08 September 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_53-1