Skip to main content

Chemical Mapping of Ancient Artifacts and Fossils with X-Ray Spectroscopy

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

The use of synchrotron radiation for the study of ancient objects has seen a significant increase over the last decade. Many of the major synchrotrons now have expertise and instrumentation that are specialized for the study of ancient objects. After giving an overview of these capabilities in the introduction, we focus in this chapter on synchrotron-rapid-scanning X-ray fluorescence (SRS-XRF) imaging of large objects to uncover ancient writings and chemical preservation in fossils. We will also describe the applications of X-ray absorption spectroscopy and new developments in X-ray Raman scattering, which are used to complement SRS-XRF mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Acksel et al., Humus-rich topsoils in SW Norway – molecular and isotopic signatures of soil organic matter as indicators for anthropo-pedogenesis. Catena 172, 831–845 (2019)

    Article  Google Scholar 

  • N. Afif et al., The syriac galen palimpsest: a tale of two texts. Manuscr. Stud.: J. Schoenberg Inst. Manuscr. Stud. 3(1), 110–154 (2018a)

    Article  Google Scholar 

  • N. Afif et al., Analyzing images, editing texts: The Manchester project. Manuscr. Stud.: J. Schoenberg Inst. Manuscr. Stud. 3(1), 155–185 (2018b)

    Article  Google Scholar 

  • M. Alfeld, L. de Viguerie, Recent developments in spectroscopic imaging techniques for historical paintings-a review. Spectrochim. Acta B At. Spectrosc. 136, 81–105 (2017)

    Article  ADS  Google Scholar 

  • M. Alfeld et al., The eye of the medusa: XRF imaging reveals unknown traces of antique polychromy. Anal. Chem. 89(3), 1493–1500 (2017)

    Article  Google Scholar 

  • J. Alleon et al., Molecular preservation of 1.88 [thinsp] Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat. Commun. 7, 11977 (2016a)

    Article  ADS  Google Scholar 

  • J. Alleon et al., Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem. Geol. 437, 98–108 (2016b)

    Article  ADS  Google Scholar 

  • J. Alleon et al., Organic molecular heterogeneities can withstand diagenesis. Sci. Rep. 7(1), 1508 (2017)

    Article  ADS  Google Scholar 

  • J. Anné et al., Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates. J. R. Soc. Interface 11(96), 20140277 (2014)

    Article  Google Scholar 

  • J. Anné et al., Visualisation of developmental ossification using trace element mapping. J. Anal. At. Spectrom. 32(5), 967–974 (2017)

    Article  Google Scholar 

  • J Anné et al., Morphological and chemical evidence for cyclic bone growth in a fossil hyaena. J. Anal. At. Spectrom. 33(12), 2062–2069 (2018)

    Google Scholar 

  • H.E. Barden et al., Geochemical evidence of the seasonality, affinity and pigmenation of solenopora jurassica. PLoS One 10(9), e0138305 (2015a)

    Article  Google Scholar 

  • H.E. Barden et al., Bacteria or melanosomes? A geochemical analysis of micro-bodies on a tadpole from the Oligocene Enspel Formation of Germany. Palaeobiodivers. Palaeoenviron. 95(1), 33–45 (2015b)

    Article  Google Scholar 

  • S. Barkan et al., Extreme high count rate performance with a silicon drift detector and ASIC electronics. Biol. Chem. Res. 2015, 338–344 (2015)

    Google Scholar 

  • M.J. Bauer, HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys. Chem. Chem. Phys. 16(27), 13827–13837 (2014)

    Article  Google Scholar 

  • R. Belkhou et al., HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J. Synchrotron Radiat. 22(4), 968–979 (2015)

    Article  Google Scholar 

  • U. Bergmann, X-Ray Fluorescence Imaging of the Archimedes Palimpsest: A Technical Summary (2005) https://www.slac.stanford.edu/gen/com/images/technical%20summary_final.pdf

  • U. Bergmann, Archimedes brought to light. Phys. World 20(11), 39–42 (2007)

    Article  Google Scholar 

  • U. Bergmann, Imaging with X-ray fluorescence, in The Archimedes Palimpsest (Cambridge University Press, Cambridge, UK, 2011)

    Google Scholar 

  • U. Bergmann, K.T. Knox, Pseudo-color enhanced X-ray fluorescence imaging of the Archimedes Palimpsest, in Document Recognition and Retrieval XVI, edited by Kathrin Berkner, Laurence Likforman-Sulem, Proc. of SPIE-IS&T Electronic Imaging, SPIE 7247, 724702-1-13 (2009)

    Google Scholar 

  • U. Bergmann, P. Glatzel, S.P. Cramer, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchem. J. 71, 221–230 (2002)

    Article  Google Scholar 

  • U. Bergmann et al., Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chem. Phys. Lett. 369(1–2), 184–191 (2003)

    Article  ADS  Google Scholar 

  • U. Bergmann et al., Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9060–9065 (2010)

    Article  ADS  Google Scholar 

  • U. Bergmann, P.L. Manning, R.A. Wogelius, Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. Annu. Rev. Anal. Chem. (Palo Alto, Calif) 5, 361–389 (2012)

    Article  ADS  Google Scholar 

  • S. Bernard et al., XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon 48(9), 2506–2516 (2010)

    Article  Google Scholar 

  • L. Bertrand et al., Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal. Bioanal. Chem. 399(9), 3025–3032 (2011)

    Article  Google Scholar 

  • L. Bertrand et al., Development and trends in synchrotron studies of ancient and historical materials. Phys. Rep. 519(2), 51–96 (2012)

    Article  ADS  Google Scholar 

  • L. Bertrand et al., A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138(16), 4463–4469 (2013)

    Article  ADS  Google Scholar 

  • L. Bertrand et al., The fate of archaeological keratin fibres in a temperate burial context: microtaphonomy study of hairs from Marie de Bretagne (15th c., Orléans, France). J. Archaeol. Sci. 42, 487–499 (2014)

    Article  Google Scholar 

  • L. Bertrand et al., Mitigation strategies for radiation damage in the analysis of ancient materials. TrAC Trends Anal. Chem. 66, 128–145 (2015)

    Article  Google Scholar 

  • L. Bertrand et al., Emerging approaches in synchrotron studies of materials from cultural and natural history collections, in Analytical Chemistry for Cultural Heritage (Springer, 2017), pp. 1–39

    Google Scholar 

  • L. Bertrand et al., Paleo-inspired systems: durability, sustainability, and remarkable properties. Angew. Chem. Int. Ed. 57(25), 7288–7295 (2018)

    Article  Google Scholar 

  • Big Literary Find in Constantinople; Savant Discovers Books by Archimedes, Copied About 900 A.D. IT OPENS A BIG FIELD Whether the Turks Destroyed the Libraries When They Took the City Always a Disputed Question, New York Times (1907)

    Google Scholar 

  • U. Boesenberg et al., Fast XANES fluorescence imaging using a Maia detector. J. Synchrotron Radiat. 25(3), 892–898 (2018)

    Article  Google Scholar 

  • J. A. van Bokhoven, C. Lamberti (eds.), X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, Chichester, 2016), p. 890

    Google Scholar 

  • A. Buffet et al., P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: the microfocus endstation. J. Synchrotron Radiat. 19(4), 647–653 (2012)

    Article  Google Scholar 

  • F. Casadio, V. Rose, High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 111(1), 1–8 (2013)

    Article  ADS  Google Scholar 

  • A. Cau et al., Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395 (2017)

    Article  ADS  Google Scholar 

  • S. Chen et al., Synchrotron-based x-ray fluorescence microscopy as a complementary tool to light microscopy/electron microscopy for multi-scale and multi-modality analysis. J. Microsc. Microanal. 24(S2), 88–89 (2018)

    Article  Google Scholar 

  • Y.-c.K. Chen-Wiegart et al., Early science commissioning results of the sub-micron resolution X-ray spectroscopy beamline (SRX) in the field of materials science and engineering. AIP Conf. Proc. 1764(1), 030004 (2016)

    Article  Google Scholar 

  • Y.-c.K. Chen-Wiegart et al., Elemental and molecular segregation in oil paintings due to lead soap degradation. Sci. Rep. 7(1), 11656 (2017)

    Article  ADS  Google Scholar 

  • W. Christens-Barry, J.R. Easton, K.T. Knox, Imaging and image-processing techniques, in The Archimedes Palimpsest, ed. by R. Netz, W. Noel (Cambridge University Press, Cambridge, UK, 2011)

    Google Scholar 

  • P.K. Cook et al., Strontium speciation in archaeological otoliths. J. Anal. At. Spectrom. 31(3), 700–711 (2016)

    Article  Google Scholar 

  • D. Coster, Y. Nishina, On the quantitative chemical analysis by means of X-ray spectrum. Chem. News 130, 149–152 (1925)

    Google Scholar 

  • M. Cotte et al., The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J. Anal. At. Spectrom. 32(3), 477–493 (2017)

    Article  Google Scholar 

  • M. Cotte et al., Applications of synchrotron X-ray nano-probes in the field of cultural heritage. C. R. Phys. 19, 575 (2018)

    Article  ADS  Google Scholar 

  • H. Cullmann, Luigi Cherubini – Médée – Critical Edition of the Original Version (Simrock, Berlin, 2012)

    Google Scholar 

  • F. Da Pieve et al., Casting light on the darkening of colors in historical paintings. Phys. Rev. Lett. 111(20), 208302 (2013)

    Article  ADS  Google Scholar 

  • C. Darwin, On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859)

    Book  Google Scholar 

  • D. Davesne et al., Exceptional preservation of a Cretaceous intestine provides a glimpse of the early ecological diversity of spiny-rayed fishes (Acanthomorpha, Teleostei). Sci. Rep. 8(1), 8509 (2018)

    Article  ADS  Google Scholar 

  • F. De Groot, G. Vankó, P. Glatzel, The 1s X-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21(10), 104207 (2009)

    Article  ADS  Google Scholar 

  • C. Dejoie et al., Crystal structure of an indigo@ silicalite hybrid related to the ancient maya blue pigment. J. Phys. Chem. C 118(48), 28032–28042 (2014a)

    Article  Google Scholar 

  • C. Dejoie et al., Learning from the past: rare ε-Fe 2 O 3 in the ancient black-glazed Jian (Tenmoku) wares. Sci. Rep. 4, 4941 (2014b)

    Article  Google Scholar 

  • C. Dejoie et al., Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J. Appl. Crystallogr. 48(5), 1522–1533 (2015)

    Article  Google Scholar 

  • A.J. Dent et al., B18: a core XAS spectroscopy beamline for diamond. J. Phys. Conf. Ser. 190(1), 012039 (2009)

    Article  Google Scholar 

  • S. Diaz-Moreno et al., I20; the versatile x-ray absorption spectroscopy beamline at diamond light source. J. Phys.: Conf. Ser. 190, 012038 (2009). IOP Publishing

    Google Scholar 

  • S. Diaz-Moreno et al., The spectroscopy village at diamond light source. J. Synchrotron Radiat. 25(4), 998–1009 (2018)

    Article  Google Scholar 

  • A.-C. Dippel et al., Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Radiat. 22(3), 675–687 (2015)

    Article  Google Scholar 

  • M. d’Ischia et al., Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res. 26(5), 616–633 (2013)

    Article  Google Scholar 

  • M. Drakopoulos et al., I12: the joint engineering, environment and processing (JEEP) beamline at diamond light source. J. Synchrotron Radiat. 22(3), 828–838 (2015)

    Article  Google Scholar 

  • P. Dredge et al., Mapping Henry: synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII. Appl. Phys. A 121(3), 789–800 (2015)

    Article  ADS  Google Scholar 

  • P. Dredge et al., Unmasking Sidney Nolan’s Ned Kelly: X-ray fluorescence conservation imaging, art historical interpretation and virtual reality visualisation. Aust. N. Z. J. Art 17(2), 147–161 (2017)

    Google Scholar 

  • J.P. Echard et al., The nature of the extraordinary finish of Stradivari’s instruments. Angew. Chem. Int. Ed. 49(1), 197–201 (2010)

    Article  Google Scholar 

  • J.-P. Echard et al., Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood. Analyst 140(15), 5344–5353 (2015)

    Article  ADS  Google Scholar 

  • N. Edwards et al., Synchrotron rapid scanning X-ray fluorescence of soft-tissue preserved in fossils. J. Vertebr. Paleontol. 31, 104–104 (2011a)

    Google Scholar 

  • N.P. Edwards et al., Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. Proc. R. Soc. B-Biol. Sci. 278(1722), 3209–3218 (2011b)

    Article  Google Scholar 

  • N.P. Edwards et al., Mapping prehistoric ghosts in the synchrotron. Appl. Phys. A-Mater. Sci. Process. 111(1), 147–155 (2013)

    Article  ADS  Google Scholar 

  • N.P. Edwards et al., Leaf metallome preserved over 50 million years. Metallomics 6(4), 774–782 (2014)

    Article  Google Scholar 

  • N.P. Edwards et al., Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6, 34002 (2016)

    Article  ADS  Google Scholar 

  • N.P. Edwards et al., A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2. J. Synchrotron Radiat. 25, 1565–1573 (2018)

    Article  Google Scholar 

  • V.M. Egerton et al., The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird. J. Anal. At. Spectrom. 30(3), 627–634 (2015)

    Article  Google Scholar 

  • D.J. Field et al., Melanin concentration gradients in modern and fossil feathers. PLoS One 8(3), e59451 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Fildes, X-rays reveal Archimedes’ Secrets, BBC News (2006)

    Google Scholar 

  • M. Freudenberg, L. Glaser, The axe from Ahneby – non-destructive view with X-rays inside the object, in Interactions Without Borders, ed. by B.V. Eriksen, et al. (2017), pp. 103–110

    Google Scholar 

  • D. Friebel et al., In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem. Chem. Phys. 13(1), 262–266 (2011)

    Article  Google Scholar 

  • E.S. Friedman et al., Synchrotron radiation-based X-ray analysis of bronze artifacts from an Iron Age site in the Judean Hills. J. Archaeol. Sci. 35(7), 1951–1960 (2008)

    Article  Google Scholar 

  • A.A. Gambardella et al., Sulfur K-edge XANES of lazurite: toward determining the provenance of lapis lazuli. Microchem. J. 125, 299–307 (2016)

    Article  Google Scholar 

  • M. Ganio et al., From lapis lazuli to ultramarine blue: investigating Cennino Cennini’s recipe using sulfur K-edge XANES. Pure Appl. Chem. 90(3), 463–475 (2018)

    Article  Google Scholar 

  • M. Gay et al., Palaeolithic paint palettes used at La Garma Cave (Cantabria, Spain) investigated by means of combined in situ and synchrotron X-ray analytical methods. J. Anal. At. Spectrom. 30(3), 767–776 (2015)

    Article  Google Scholar 

  • C. Gervais et al., Why does Prussian blue fade? Understanding the role (s) of the substrate. J. Anal. At. Spectrom. 28(10), 1600–1609 (2013)

    Article  Google Scholar 

  • C. Gervais et al., X-ray photochemistry of Prussian blue cellulosic materials: evidence for a substrate-mediated redox process. Langmuir 31(29), 8168–8175 (2015)

    Article  Google Scholar 

  • A. Gibson et al., An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms. Herit. Sci. 6, 7 (2018)

    Article  Google Scholar 

  • K. Gilmore et al., Efficient implementation of core-excitation Bethe–Salpeter equation calculations. Comput. Phys. Commun. 197, 109–117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Glaser, Tagungsband Archäometrie und Denkmalpflege 2016 (Verlag Deutsches Elektronen-Synchrotron, Göttingen., 2016-09-28–2016-10-01, 2016)

    Google Scholar 

  • L. Glaser, Archäometrie und Denkmalpflege 2018: Proceedings; 1st, in DESY-PROC. Hamburg 20 Mar 2018–24 Mar 2018, Hamburg (Germany) Y2 20 Mar 2018–24 Mar 2018 M2 (Verlag Deutsches Elektronen-Synchrotron, Hamburg, 2018)

    Google Scholar 

  • P. Glatzel, U. Bergmann, High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coord. Chem. Rev. 249(1–2), 65–95 (2005)

    Article  Google Scholar 

  • L.G. Gonzalez et al., Effects of isopropanol on collagen fibrils in new parchment. Chem. Cent. J. 6(1), 24 (2012)

    Article  Google Scholar 

  • P. Gueriau et al., Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. PLoS One 9(1), e86946 (2014)

    Article  ADS  Google Scholar 

  • P. Gueriau, C. Mocuta, L. Bertrand, Cerium anomaly at microscale in fossils. Anal. Chem. 87(17), 8827–8836 (2015)

    Article  Google Scholar 

  • P. Gueriau et al., Noninvasive synchrotron-based X-ray Raman scattering discriminates carbonaceous compounds in ancient and historical materials. Anal. Chem. 89(20), 10819–10826 (2017)

    Article  Google Scholar 

  • A. Haibel et al., Latest developments in microtomography and nanotomography at PETRA III. Powder Diffract. 25(2), 161–164 (2010a)

    Article  ADS  Google Scholar 

  • A. Haibel, et al. Micro-and nano-tomography at the GKSS imaging beamline at PETRA III, in SPIE Optical Engineering + Applications (SPIE, 2010b)

    Google Scholar 

  • K. Hämäläinen et al., Elimination of the inner-shell lifetime broadening in x-ray-absorption spectroscopy. Phys. Rev. Lett. 67(20), 2850 (1991)

    Article  ADS  Google Scholar 

  • D. Harazim et al., Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone. Geology 43(11), 1007–1010 (2015)

    Article  ADS  Google Scholar 

  • S. Hoerlé et al., Imaging the layered fabric of paints from Nomansland rock art (South Africa). Archaeometry 58, 182–199 (2016)

    Article  Google Scholar 

  • J. Hormes et al., Mortar samples from the Abbey of Saint John at Mustair: a combined spatially resolved X-ray fluorescence and X-ray absorption (XANES) study. J. Anal. At. Spectrom. 30, 702–706 (2015)

    Article  Google Scholar 

  • L. Hou et al., A diapsid skull in a new species of the primitive bird Confuciusornis. Nature 399(6737), 679 (1999)

    Article  ADS  Google Scholar 

  • D.L. Howard et al., High-definition X-ray fluorescence elemental mapping of paintings. J. Anal. Chem. 84(7), 3278–3286 (2012)

    Article  Google Scholar 

  • S. Huotari et al., Direct tomography with chemical-bond contrast. Nat. Mater. 10, 489 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Huotari et al., A large-solid-angle X-ray Raman scattering spectrometer at ID20 of the European Synchrotron Radiation Facility. J. Synchrotron Radiat. 24(2), 521–530 (2017)

    Article  Google Scholar 

  • S. Ito et al., Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 24(4), 605–613 (2011)

    Article  Google Scholar 

  • S. Ivo de Oliveira et al., Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26(19), 2594–2601 (2016)

    Article  Google Scholar 

  • M.D. Jackson et al., Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J. Am. Ceram. Soc. 96(8), 2598–2606 (2013)

    Article  Google Scholar 

  • M.D. Jackson et al., Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc. Natl. Acad. Sci. 111(52), 18484–18489 (2014)

    Article  ADS  Google Scholar 

  • M.D. Jackson et al., Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Mineral.: J. Earth Planet. Mater. 102(7), 1435–1450 (2017)

    Article  Google Scholar 

  • K. Janssens, K. Proost, G. Falkenberg, Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. J. Spectrochim. Acta B: At. Spectrosc. 59(10–11), 1637–1645 (2004)

    Article  ADS  Google Scholar 

  • J.E. Johnson et al., Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 110(28), 11238–11243 (2013)

    Article  ADS  Google Scholar 

  • J.E. Johnson et al., Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 173, 210–231 (2016)

    Article  ADS  Google Scholar 

  • M.W. Jones et al., Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian synchrotron XFM beamline. J. Synchrotron Radiat. 23(5), 1151–1157 (2016)

    Article  Google Scholar 

  • M.D. de Jonge et al., Spiral scanning X-ray fluorescence computed tomography. Opt. Express 25(19), 23424–23436 (2017)

    Article  ADS  Google Scholar 

  • K. Kaznatcheev et al., Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 582(1), 96–99 (2007)

    Article  ADS  Google Scholar 

  • I. Kempson et al., Large area synchrotron X-ray fluorescence mapping of biological samples. J. Instrum. 9(12), C12040 (2014)

    Article  Google Scholar 

  • C.J. Kennedy et al., Studies of hair for use in lime plaster: implications for conservation and new work. Polym. Degrad. Stab. 98(4), 894–898 (2013)

    Article  Google Scholar 

  • F. Kergourlay et al., Stabilization treatment of cultural heritage artefacts: in situ monitoring of marine iron objects dechlorinated in alkali solution. Corros. Sci. 132, 21–34 (2018)

    Article  Google Scholar 

  • H.J. Kirkwood et al., Simultaneous X-ray diffraction, crystallography and fluorescence mapping using the Maia detector. Acta Mater. 144, 1–10 (2018)

    Article  Google Scholar 

  • D. C. Koningsberger, R. Prins (eds.), X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)

    Google Scholar 

  • M.S. Kozachuk et al., Exploring tarnished daguerreotypes with synchrotron light: XRF and mu-XANES analysis. Herit. Sci. 6, 12 (2018)

    Article  Google Scholar 

  • M. Krisch, F. Sette, X-ray Raman scattering from low Z materials. J Surf. Rev. Lett. 9(02), 969–976 (2002)

    Article  ADS  Google Scholar 

  • M.H. Krisch et al., Momentum transfer dependence of inelastic X-ray scattering from the Li $\mathit{K}$ edge. Phys. Rev. Lett. 78(14), 2843–2846 (1997)

    Article  ADS  Google Scholar 

  • R.S.K. Lam et al., Anisotropy of chemical bonds in collagen molecules studied by x-ray absorption near-edge structure (XANES) spectroscopy. ACS Chem. Biol. 7(3), 476–480 (2012)

    Article  Google Scholar 

  • A. Lanzirotti et al., High-speed, coupled micro-beam XRD/XRF/XAFS mapping at GSECARS: APS beamline 13-ID-E. Clays Clay Miner. 21, 53–64 (2016)

    Google Scholar 

  • N.L. Larson et al., A new look at fossil cephalopods, in Cephalopods – Present and Past, ed. by K. Tanabe et al., (Tokai University Press, Tokyo, 2010), pp. 303–314

    Google Scholar 

  • Y. Leon et al., The nature of marbled Terra Sigillata slips: a combined μXRF and μXRD investigation. Appl. Phys. A 99(2), 419–425 (2010)

    Article  ADS  Google Scholar 

  • Y. Leon et al., Evolution of terra sigillata technology from Italy to Gaul through a multi-technique approach. J. Anal. At. Spectrom. 30(3), 658–665 (2015)

    Article  MathSciNet  Google Scholar 

  • S. Li et al., Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res. Solid Earth 118(3), 791–807 (2013)

    Article  ADS  Google Scholar 

  • Z. Liu et al., Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J. Archaeol. Sci. 34(11), 1878–1883 (2007)

    Article  Google Scholar 

  • P. Lynch et al., Application of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient Egyptian pigments. J. Appl. Crystallogr. 40(6), 1089–1096 (2007)

    Article  Google Scholar 

  • A. MacDowell et al., X-ray micro-tomography at the Advanced Light Source, in Developments in X-Ray Tomography VIII (International Society for Optics and Photonics, 2012)

    Google Scholar 

  • I.D. MacLeod, The application of chemistry to conserve cultural heritage. Teach. Sci. 61(2), 52 (2015)

    MathSciNet  Google Scholar 

  • P.L. Manning et al., Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J. Anal. At. Spectrom. 28(7), 1024–1030 (2013)

    Article  Google Scholar 

  • I. Mantouvalou et al., Reconstruction of thickness and composition of stratified materials by means of 3D micro X-ray fluorescence spectroscopy. J. Anal. Chem. 80(3), 819–826 (2008)

    Article  Google Scholar 

  • W.L. Mao et al., Bonding changes in compressed superhard graphite. Science 302(5644), 425–427 (2003)

    Article  ADS  Google Scholar 

  • K.J. McGraw, Melanins, metals, and mate quality. Oikos 102(11), 402–406 (2003)

    Article  Google Scholar 

  • F. Meirer et al., Full-field XANES analysis of Roman ceramics to estimate firing conditions – a novel probe to study hierarchical heterogeneous materials. J. Anal. At. Spectrom. 28(12), 1870–1883 (2013)

    Article  Google Scholar 

  • H. von Meyer, Vogel-Feder und Palpipes priscus von Solenhofen. N. Jahrb. Mineral. Geognosie Geol. Petrefakten-Kunde 1861, 561 (1861a)

    Google Scholar 

  • H. von Meyer, Archaeopteryx lithographica (Vogelfeder) und Pterodactylus von Solnhofen. N. Jahrb. Mineral. Geognosie Geol. Petrefakten-Kunde 1861(6), 678–679 (1861b)

    Google Scholar 

  • A. Michelin et al., Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM. J. Anal. At. Spectrom. 28(1), 59–66 (2013)

    Article  Google Scholar 

  • N. Mills, Something old, something new: ancient culture at the Australian Synchrotron. Chem. Aust. 77(10), 20 (2010)

    Google Scholar 

  • H. Mimura et al., Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122 (2009)

    Article  Google Scholar 

  • C. Mirguet, Microscanning XRF, XANES, and XRD Studies of the Decorated Surface of Roman Terra Sigillata Ceramics (2009)

    Google Scholar 

  • Y. Mizuno, Y. Mizuno, Y. Ohmura, J. Phys. Soc. Jpn. 22, 445 (1967). J. Phys. Soc. Jpn., 1967. 22, 445

    Article  ADS  Google Scholar 

  • M. Moini, C.M. Rollman, L. Bertrand, Assessing the impact of synchrotron X-ray irradiation on proteinaceous specimens at macro and molecular levels. Anal. Chem. 86(19), 9417–9422 (2014)

    Article  Google Scholar 

  • L. Monico et al., Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal. Chem. 85(2), 851–859 (2013)

    Article  Google Scholar 

  • L. Monico et al., Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J. Anal. At. Spectrom. 30(3), 613–626 (2015)

    Article  Google Scholar 

  • J.F.W. Mosselmans et al., I18–the microfocus spectroscopy beamline at the diamond light source. J. Synchrotron Radiat. 16(6), 818–824 (2009)

    Article  Google Scholar 

  • A. Možir et al., A study of degradation of historic parchment using small-angle X-ray scattering, synchrotron-IR and multivariate data analysis. Anal. Bioanal. Chem. 402(4), 1559–1566 (2012)

    Article  Google Scholar 

  • C.A. Murray et al., New synchrotron powder diffraction facility for long-duration experiments. J. Appl. Crystallogr. 50(1), 172–183 (2017)

    Article  Google Scholar 

  • R. Netz, W. Noel, The Archimedes Codex (Da Capo Press, Perseus Book Group, Philadelphia, 2007)

    MATH  Google Scholar 

  • R. Netz et al., The Archimedes Palimpsest (Cambridge University Press, Cambridge, UK, 2011)

    MATH  Google Scholar 

  • M.J. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8(2), 322–324 (2001)

    Article  Google Scholar 

  • T. Nietzold et al., Quantifying X-ray fluorescence data using MAPS. J. Vis. Exp. 132, e56042 (2018)

    Google Scholar 

  • M.A. Norell, X. Xu, Feathered dinosaurs. Annu. Rev. Earth Planet. Sci. 33, 277–299 (2005)

    Article  ADS  Google Scholar 

  • M. Notis et al., Synchrotron X-ray diffraction and fluorescence study of the astrolabe. Appl. Phys. A 111(1), 129–134 (2013)

    Article  ADS  Google Scholar 

  • G. Paris et al., Neoarchean carbonate–associated sulfate records positive Δ33S anomalies. Science 346(6210), 739–741 (2014)

    Article  ADS  Google Scholar 

  • D. Paterson et al., The X-ray fluorescence microscopy beamline at the Australian synchrotron, in AIP Conference Proceedings (AIP, 2011)

    Google Scholar 

  • R.S. Popelka-Filcoff et al., Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. Anal. Methods 7(17), 7363–7380 (2015)

    Article  Google Scholar 

  • R.S. Popelka-Filcoff et al., Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst 141(12), 3657–3667 (2016)

    Article  ADS  Google Scholar 

  • B.F.G. Popescu et al., Mapping metals in Parkinson’s and normal brain using rapid-scanning x-ray fluorescence. J Phys. Med. Biol. 54(3), 651 (2009a)

    Article  Google Scholar 

  • B.F.G. Popescu et al., Synchrotron X-ray fluorescence reveals abnormal metal distributions in brain and spinal cord in spinocerebellar ataxia: a case report. Cerebellum 8(3), 340–351 (2009b)

    Article  Google Scholar 

  • B.F.G. Popescu et al., Iron, copper, and zinc distribution of the cerebellum. Cerebellum 8(2), 74–79 (2009c)

    Article  Google Scholar 

  • J. Qiang et al., Two feathered dinosaurs from northeastern China. Nature 393(6687), 753 (1998)

    Article  ADS  Google Scholar 

  • P. Quinn et al., in XRM 2018 Microscopy and Microanalysis Proceedings (2018)

    Google Scholar 

  • M. Radtke et al., Beyond the great wall: gold of the silk roads and the first empire of the steppes. Anal. Chem. 85(3), 1650–1656 (2013)

    Article  Google Scholar 

  • M. Radtke et al., Double dispersive X-ray fluorescence (D2XRF) based on an energy dispersive pnCCD detector for the detection of platinum in gold. Microchem. J. 125, 56–61 (2016)

    Article  Google Scholar 

  • C. Rau, Imaging with coherent synchrotron radiation: X-ray imaging and coherence beamline (I13) at diamond light source. Synchrotron Radiat. News 30(5), 19–25 (2017)

    Article  Google Scholar 

  • C. Rau et al., Coherent imaging at the diamond beamline I13. Phys. Status Solidi A 208(11), 2522–2525 (2011)

    Article  ADS  Google Scholar 

  • B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005)

    Article  Google Scholar 

  • M.R. Raven et al., Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 9(1), 3409 (2018)

    Article  ADS  Google Scholar 

  • S. Réguer et al., Iron corrosion in archaeological context: structural refinement of the ferrous hydroxychloride β-Fe2 (OH) 3Cl. Corros. Sci. 100, 589–598 (2015)

    Article  Google Scholar 

  • I. Reiche et al., Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings. Appl. Phys. A 83(2), 169–173 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • I. Reiche et al., Synchrotron radiation and laboratory micro x-ray computed tomography—useful tools for the material identification of prehistoric objects made of ivory, bone or antler. J. Anal. At. Spectrom. 26(9), 1802–1812 (2011)

    Article  Google Scholar 

  • H. Riesemeier et al., Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom. Int. J. 34(2), 160–163 (2005)

    Article  ADS  Google Scholar 

  • P. Riley, Melanin. Int. J. Biochem. Cell Biol. 29(11), 1235–1239 (1997)

    Article  Google Scholar 

  • E.C. Robertson, R. Blyth, XANES Investigation of the Effects of Heat Treatment on an Archaeological Tool Stone, Canadian Light Source 2008 Activity Report (2009), pp. 96–97

    Google Scholar 

  • N. Robin et al., A carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Curr. Biol. 26(10), 1376–1382 (2016)

    Article  Google Scholar 

  • L. Robinet et al., Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-edge. Anal. Chem. 83(13), 5145–5152 (2011)

    Article  Google Scholar 

  • S.V. Roth et al., In situ observation of cluster formation during nanoparticle solution casting on a colloidal film. J. Phys. Condens. Matter 23(25), 254208 (2011)

    Article  ADS  Google Scholar 

  • V. Rouchon, S. Bernard, Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. J. Anal. At. Spectrom. 30(3), 635–641 (2015)

    Article  Google Scholar 

  • J.-P. Rueff, A. Shukla, Inelastic x-ray scattering by electronic excitations under high pressure. Rev. Mod. Phys. 82(1), 847–896 (2010)

    Article  ADS  Google Scholar 

  • J.P. Rueff et al., The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. J. Synchrotron Radiat. 22(1), 175–179 (2015)

    Article  Google Scholar 

  • C. Ryan et al., Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 619(1–3), 37–43 (2010)

    Article  ADS  Google Scholar 

  • C. Ryan et al., Maia X-ray fluorescence imaging: capturing detail in complex natural samples, in Journal of Physics: Conference Series (IOP Publishing, 2014)

    Google Scholar 

  • C. Ryan et al., The Maia detector journey: development, capabilities and applications. J. Microsc. Microanal. 24(S1), 720–721 (2018)

    Article  Google Scholar 

  • C. Ryan, et al., The New Maia detector system: methods for high definition trace element imaging of natural Material, in AIP Conference Proceedings (AIP, 2010)

    Google Scholar 

  • B. Sadeghi, U. Bergmann, The codex of a companion of the prophet and the Qur’ān of the prophet. Arabica 57(4), 343–436 (2010)

    Article  Google Scholar 

  • C.J. Sahle et al., Planning, performing and analyzing x-ray Raman scattering experiments. J. Synchrotron Radiat. 22(2), 400–409 (2015)

    Article  Google Scholar 

  • C.J. Sahle et al., Improving the spatial and statistical accuracy in X-ray Raman scattering based direct tomography. J. Synchrotron Radiat. 24(2), 476–481 (2017)

    Article  Google Scholar 

  • N. Schell et al., The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 772, 57–61 (2014)

    Article  Google Scholar 

  • J. Schönenberger et al., Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann. Bot. 109(5), 921–936 (2012)

    Article  Google Scholar 

  • C.G. Schroer et al., Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl. Instrum. Methods Phys. Res. Sect. A 616(2), 93–97 (2010)

    Article  ADS  Google Scholar 

  • W. Schülke et al., Interband transitions and core excitation in highly oriented pyrolytic graphite studied by inelastic synchrotron x-ray scattering: band-structure information. Phys. Rev. B 38(3), 2112–2123 (1988)

    Article  ADS  Google Scholar 

  • P. Sciau et al., Micro scanning X-ray diffraction study of Gallo-Roman Terra Sigillata ceramics. Appl. Phys. A 83(2), 219–224 (2006)

    Article  ADS  Google Scholar 

  • P. Sciau et al., Reverse engineering the ancient ceramic technology based on x-ray fluorescence spectromicroscopy. J. Anal. At. Spectrom. 26(5), 969–976 (2011)

    Article  Google Scholar 

  • R.F. Service, Imaging. Brilliant X-rays reveal fruits of a brilliant mind. Science 313(5788), 744 (2006)

    Article  Google Scholar 

  • N. Sharp-Paul, Synchrotron research solves art mystery, Synchrotron Radiation News, 30(2), 47–48, (2017) https://doi.org/10.1080/08940886.2017.1289812

  • M.J.N. Siegbahn, Relations between the K and L series of the high-frequency spectra. Nature 96(2416), 676 (1916)

    Google Scholar 

  • H. Simon et al., A synchrotron-based study of the Mary Rose Iron cannonballs. Angew. Chem. Int. Ed. 57, 7390–7395 (2018)

    Article  Google Scholar 

  • S.P. Slotznick et al., Iron mineralogy and redox chemistry of the mesoproterozoic Newland formation in the Helena embayment, belt supergroup, Montana. Northwest Geol. 44, 55–72 (2015)

    Google Scholar 

  • D. Sokaras et al., A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford synchrotron radiation lightsource. Rev. Sci. Instrum. 83(4), 043112 (2012)

    Article  ADS  Google Scholar 

  • A. Somogyi et al., Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil, in X-Ray Nanoimaging: Instruments and Methods III (International Society for Optics and Photonics, 2017)

    Google Scholar 

  • M. Stampanoni et al., in Trends in Synchrotron-Based Tomographic Imaging: The SLS Experience, vol. 6318 (2006)

    Google Scholar 

  • F. Stebner et al., A fossil biting midge (Diptera: Ceratopogonidae) from early Eocene Indian amber with a complex pheromone evaporator. Sci. Rep. 6, 34352 (2016)

    Article  ADS  Google Scholar 

  • J. Stohr, NEXAFS Spectroscopy, vol 25 (Springer, Berlin, 1992)

    Book  Google Scholar 

  • J. Strempfer et al., Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Radiat. 20(4), 541–549 (2013)

    Article  Google Scholar 

  • T. Suzuki, X-ray Raman scattering experiment. I. J. Phys. Soc. Jpn. 22(5), 1139–1150 (1967)

    Article  ADS  Google Scholar 

  • T. Swanston et al., Element localization in archaeological bone using synchrotron radiation X-ray fluorescence: identification of biogenic uptake. J. Archaeol. Sci. 39(7), 2409–2413 (2012)

    Article  Google Scholar 

  • T. Swanston et al., Synchrotron X-ray fluorescence imaging evidence of biogenic mercury identified in a burial in colonial Antigua. J. Archaeol. Sci. 58, 26–30 (2015)

    Article  Google Scholar 

  • C.C. Swisher III et al., Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 400(6739), 58 (1999)

    Article  ADS  Google Scholar 

  • P. Tafforeau et al., Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A 83(2), 195–202 (2006)

    Article  ADS  Google Scholar 

  • M. Takahashi, P.S. Herendeen, X. Xiao, Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan. J. Plant Res. 130(5), 809–826 (2017)

    Article  Google Scholar 

  • S. Thompson et al., Beamline I11 at diamond: a new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80(7), 075107 (2009)

    Article  ADS  Google Scholar 

  • M. Thoury et al., High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object. Nat. Commun. 7, 13356 (2016)

    Article  ADS  Google Scholar 

  • D. Thurrowgood et al., A hidden portrait by Edgar Degas. Sci. Rep. 6, 29594 (2016)

    Article  ADS  Google Scholar 

  • K. Tohji, Y. Udagawa, Novel approach for structure analysis by X-ray Raman scattering. Phys. Rev. B 36(17), 9410 (1987)

    Article  ADS  Google Scholar 

  • K. Tohji, Y. Udagawa, X-ray Raman scattering as a substitute for soft-X-ray extended X-ray-absorption fine structure. Phys. Rev. B 39(11), 7590 (1989)

    Article  ADS  Google Scholar 

  • S. Vogt, A. Lanzirotti, Trends in X-ray fluorescence microscopy. Synchrotron Radiat. News 26(2), 32–38 (2013)

    Article  Google Scholar 

  • M.S. Walton et al., Material evidence for the use of attic white-ground lekythoi ceramics in cremation burials. J. Archaeol. Sci. 37(5), 936–940 (2010)

    Article  Google Scholar 

  • N. Watanabe et al., Anisotropy of hexagonal boron nitride core absorption spectra by x-ray Raman spectroscopy. Appl. Phys. Lett. 69(10), 1370–1372 (1996)

    Article  ADS  Google Scholar 

  • T. Weitkamp et al., Progress in microtomography at the ANATOMIX beamline of synchrotron soleil. Microsc. Microanal. 24(S2), 246–247 (2018)

    Article  Google Scholar 

  • P. Wellnhofer, Archaeopteryx: Der Urvogel von Solnhofen (Verlag Dr. Friedrich Pfeil, München, 2008)

    Google Scholar 

  • P. Wellnhofer, F. Haase, Archaeopteryx: The Icon of Evolution (F. Pfeil, Munich, 2009)

    Google Scholar 

  • P. Wernet et al., The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)

    Article  ADS  Google Scholar 

  • F. Wilde et al., Micro-CT at the imaging beamline P05 at PETRA III. AIP Conf. Proc. 1741(1), 030035 (2016)

    Article  Google Scholar 

  • R.A. Wogelius et al., Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333(6049), 1622–1626 (2011)

    Article  ADS  Google Scholar 

  • A.R. Woll et al., Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. J. Appl. Phys. A 83(2), 235–238 (2006)

    Article  ADS  Google Scholar 

  • A.R. Woll et al., The unique history of the armorer’s shop: an application of confocal X-ray fluorescence microscopy. Stud. Cons. 53(2), 93–109 (2008)

    Article  Google Scholar 

  • H. Yan et al., Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. Opt. Express 19(16), 15069–15076 (2011)

    Article  ADS  Google Scholar 

  • M. Young et al., Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron x-ray diffraction. Appl. Phys. A 100(3), 635–646 (2010)

    Article  ADS  Google Scholar 

Special References (Websites)

Download references

Acknowledgment

This work is based on the joint efforts of several research teams, and we want to thank all of our collaborators. We would like to thank the owners of the artifacts for supporting this research. The studies were carried out at the Stanford Synchrotron Radiation Lightsource, the Synchrotron SOLEIL, and the Diamond Light Source. We are very grateful to the kind support of our science colleagues as well as the support from the engineering, technical, and administrative staff at these facilities. Funding for NPE was made available by the UK EPSRC funding council under the Innovate Programme and by the SSRL Structural Molecular Biology Program, supported by the DOE Office of Biological and Environmental Research and the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). PLM thanks the Science and Technology Facilities Council for the continued support (ST/M001814/1). Additional Funding was provided by a UK Natural Environment Research Council grant NE/J023426/1. LB acknowledges support from Région Île-de-France/DIM Matériaux anciens et patrimoniaux and from the European Commission programs IPERION CH and E-RIHS PP (GA. 654028 and 739503). Funding for the SSRL 6-2 instrument was provided by the Bruce Leak and Sandra Fairon Stanford PULSE Institute Fund. The use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Bergmann .

Editor information

Editors and Affiliations

Glossary

DPC

Differential phase contrast imaging

eV

Electron volt

EXAFS

Extended X-ray absorption fine structure

FT-IR

Fourier-transform infrared spectroscopy

HERFD

High-energy resolution fluorescence detection

HLCP

High performance liquid chromatography

keV

Kiloelectron volt

LUMO

Lowest unoccupied molecular orbital

nCT

X-ray nano computed tomography

NEXAFS

Near-edge X-ray absorption fine structure spectroscopy

PCCT

X-ray phase-contrast computed tomography

q

Momentum transfer

SAXS

Small angle X-ray scattering

STXM

Scanning transmission X-ray microscopy

ToF-SIMS

Time-of-flight secondary ion mass spectrometry

WAXS

Wide-angle X-ray scattering

XANES

X-ray absorption near-edge structure

XAS

X-ray absorption spectroscopy

XEOL

X-ray-excited optical luminescence

XRD

X-ray diffraction

XRF

X-ray fluorescence

XRS

X-ray raman scattering

μCT

X-ray micro computed tomography

μXRF

Micro X-ray fluorescence

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bergmann, U., Bertrand, L., Edwards, N.P., Manning, P.L., Wogelius, R.A. (2019). Chemical Mapping of Ancient Artifacts and Fossils with X-Ray Spectroscopy. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics