Skip to main content

Putting Molecules in the Picture: Using Correlated Light Microscopy and Soft X-Ray Tomography to Study Cells

Synchrotron Light Sources and Free-Electron Lasers

Abstract

Transmission soft x-ray microscopy (SXM) is well suited to visualizing and quantifying mesoscale biology, that is to say structures ranging from the size of a typical molecular machine up to an intact cell. In SXM, the specimen is illuminated with “water window” soft x-rays (i.e., photons with energies in the range 284 e V to 543 e V). The degree to which the illumination is absorbed by a subcellular feature depends on its chemical composition. Carbon- and nitrogen-containing biomolecules strongly absorb the illumination, while water is relatively transparent. Similarities and differences in subcellular molecular content generate contrast in SXM images of the specimen without the use of stains. In this chapter, we discuss the basic concepts behind SXM and describe how 2D SXM data is used to calculate a 3D soft x-ray tomographic (SXT) reconstruction of the specimen. SXT offers significant advantages over other high-resolution cell imaging methods. A particular strength is the capacity to image intact, fully hydrated cells, including eukaryotes such as yeast or mammalian cells. In addition to stand-alone use, we will show that SXT data can be integrated into other imaging modalities to create a comprehensive view of the specimen. The combination of SXT with fluorescence data measured from the same specimen is particularly important, since this allows molecular localization data to be viewed directly in the context of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://www.excillum.com/

  2. 2.

    https://siriusxt.com/

  3. 3.

    https://www.energetiq.com/

  4. 4.

    FEI Software: https://www.fei.com/software/

  5. 5.

    https://www.zooniverse.org/projects/h-spiers/etch-a-cell

  6. 6.

    https://slidecam-camera.lbl.gov/

References

  • Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D u-net: learning dense volumetric segmentation from sparse annotation, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, ed. by S. Ourselin, L. Joskowicz, M.R. Sabuncu, G. Unal, W. Wells (Springer International Publishing, Cham, 2016), pp. 424–432. ISBN 978-3-319-46723-8

    Chapter  Google Scholar 

  • J.-I. Agulleiro, J.-J. Fernandez, Tomo3D 2.0 – exploitation of advanced vector eXtensions (AVX) for 3D reconstruction. J. Struct. Biol. 189(2), 147–152 (2015). https://doi.org/10.1016/j.jsb.2014.11.009

  • D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • D. Attwood, W. Chao, E. Anderson, J.A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, C. Larabell, Imaging at high spatial resolution: soft x-ray microscopy to 15nm. J. Biomed. Nanotechnol. 2(2), 75–78 (2006). ISSN 1550–7033. https://doi.org/doi:10.1166/jbn.20 06.011.

  • K.V. Baev, K.A. Greene, F.F. Marciano, J.E. Samanta, A.G. Shetter, K.A. Smith, M.A. Stacy, R.F. Spetzler, Physiology and pathophysiology of cortico-basal ganglia-thalamocortical loops: theoretical and practical aspects. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26(4), 771–804 (2002) ISSN 0278–5846. https://doi.org/10.1016/S0278-5846(02)00201-4

  • M. Beister, D. Kolditz, W.A. Kalender, Iterative reconstruction methods in X-ray CT. Phys. Med. 28(2), 94–108 (2012)

    Article  Google Scholar 

  • M. Berglund, L. Rymell, M. Peuker, T. Wilhein, H.M. Hertz, Compact water-window transmission X-ray microscopy. J. Microsc. 197(3), 268–273 (2000). https://doi.org/10.1046/j.1365-2818.2000.00675.x

    Article  Google Scholar 

  • M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, H.M. Hertz, High-resolution computed tomography with a compact soft x-ray microscope. Opt. Express 17(13), 11057–11065 (2009). https://doi.org/10.1364/OE.17.011057

    Article  ADS  Google Scholar 

  • M. Bertilson, O. von Hofsten, H.M. Hertz, U. Vogt, Numerical model for tomographic image formation in transmission X-ray microscopy. Opt. Express 19(12), 11578–11583 (2011a)

    Article  ADS  Google Scholar 

  • M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, A.E. Christakou, H.M. Hertz, Laboratory soft-x-ray microscope for cryotomography of biological specimens. Opt. Express 36(14), 2728 (2011b). https://doi.org/10.1364/ol.36.002728

  • R. Bracewell, Strip integration in radio astronomy. Aust. J. Phys. 9(2), 198 (1956). https://doi.org/10.1071/ph560198

  • D.B. Carlson, J. Gelb, V. Palshin, J.E. Evans, Laboratory-based cryogenic soft x-ray tomography with correlative cryo-light and electron microscopy. Microsc. Microanal. 19(1), 22–29 (2013). https://doi.org/10.1017/s1431927612013827

    Article  ADS  Google Scholar 

  • R. Carzaniga, M.-C. Domart, L.M. Collinson, E. Duke, Cryo-soft X-ray tomography: a journey into the world of the native-state cell. Protoplasma 251(2), 449–458 (2014). https://doi.org/10.1007/s00709-013-0583-y

    Article  Google Scholar 

  • J.-H. Chang, J.M. Anderson, J.R. Votaw, Regularized image reconstruction algorithms for positron emission tomography. IEEE Trans. Med. Imaging 23(9), 1165–1175 (2004)

    Article  Google Scholar 

  • W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046), 1210–1213 (2005). https://doi.org/10.1038/nature03719

    Article  ADS  Google Scholar 

  • W. Chao, J. Kim, S. Rekawa, P. Fischer, E.H. Anderson, Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy. Opt. Express 17(20), 17669 (2009). https://doi.org/10.1364/oe.17.017669

  • H.N. Chapman, A. Barty, M.J. Bogan, S. Boutet, M. Frank, S.P. Hau-Riege, S. Marchesini, B.W. Woods, S. Bajt, W.H. Benner, R.A. London, E. Plönjes, M. Kuhlmann, R. Treusch, S. Düsterer, T. Tschentscher, J.R. Schneider, E. Spiller, T. Möller, C. Bostedt, M. Hoener, D.A. Shapiro, K.O. Hodgson, D. van der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M.M. Seibert, F.R.N.C. Maia, R.W. Lee, A. Szöke, N. Timneanu, J. Hajdu, Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006). https://doi.org/10.1038/nphys461

  • B.P. Cinquin, M. Do, G. McDermott, A.D. Walters, M. Myllys, E.A. Smith, O. Cohen-Fix, M.A. Le Gros, C.A. Larabell, Putting molecules in their place. Eur. J. Cell Biol. 115(2), 209–216 (2014)

    Google Scholar 

  • F. Ciompi, B. de Hoop, S.J. van Riel, K. Chung, E.T. Scholten, M. Oudkerk, P.A. de Jong, M. Prokop, B. van Ginneken, Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26(1), 195–202 (2015)

    Article  Google Scholar 

  • E.J. Clowney, M.A. LeGros, C.P. Mosley, F.G. Clowney, E.C. Markenskoff-Papadimitriou, M. Myllys, G. Barnea, C.A. Larabell, S. Lomvardas, Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151(4), 724–737 (2012)

    Article  Google Scholar 

  • M. Cyrklaff, A. Linaroudis, M. Boicu, P. Chlanda, W. Baumeister, G. Griffiths, J. Krijnse-Locker, Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS One 2(5), e420 (2007)

    Google Scholar 

  • R. Dahl, L.A. Staehelin, High-pressure freezing for the preservation of biological structure: theory and practice. Microsc. Res. Tech. 13(3), 165–174 (1989)

    Article  Google Scholar 

  • M.C. Darrow, Y. Zhang, B.P. Cinquin, E.A. Smith, R. Boudreau, R.H. Rochat, M.F. Schmid, Y. Xia, C.A. Larabell, W. Chiu, Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J. Cell Sci. 129(18), 3511–3517 (2016). https://doi.org/10.1242/jcs.189225

    Article  Google Scholar 

  • A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  • G. Denbeaux, E. Anderson, W. Chao, T. Eimüller, L. Johnson, M. Köhler, C. Larabell, M. Legros, P. Fischer, A. Pearson, et al. Soft x-ray microscopy to 25 nm with applications to biology and magnetic materials. Nucl. Instrum. Methods Phys. Res. A 467, 841–844 (2001)

    Article  ADS  Google Scholar 

  • G. Denbeaux, G. Schneider, A. Pearson, W. Chao, B. Bates, B. Harteneck, D. Olynick, E. Anderson, P. Fischer, M. Juenger, Recent progress with high resolution x-ray microscopy at the xm-1, in Journal de Physique IV (Proceedings), vol. 104 (EDP Sciences, 2003), pp. 9–9

    Google Scholar 

  • B.A. Dowd, G.H. Campbell, R.B. Marr, V.V. Nagarkar, S.V. Tipnis, L. Axe, D.P. Siddons, Developments in synchrotron x-ray computed microtomography at the national synchrotron light source, in Developments in X-ray Tomography II, vol. 3772. International Society for Optics and Photonics (SPIE, Bellingham, 1999), pp. 224–237

    Google Scholar 

  • J. Dubochet, M. Adrian, J.-J. Chang, J.-C. Homo, J. Lepault, A.W. McDowall, P. Schultz, Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21(2), 129–228 (1988)

    Article  Google Scholar 

  • E.M. Duke, M. Razi, A. Weston, P. Guttmann, S. Werner, K. Henzler, G. Schneider, S.A. Tooze, L.M. Collinson, Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143, 77–87 (2014). https://doi.org/10.1016/j.ultramic.2013.10.006

    Article  Google Scholar 

  • A. Ekman, V. Weinhardt, J.-H. Chen, G. McDermott, M.A. Le Gros, C. Larabell, PSF correction in soft x-ray tomography. J. Struct. Biol. 204, 9–18 (2018)

    Article  Google Scholar 

  • M.H. Ellisman, T.J. Deerinck, X. Shu, G.E. Sosinsky, Picking faces out of a crowd: genetic labels for identification of proteins in correlated light and electron microscopy imaging, in Correlative Light and Electron Microscopy, ed. by T. Müller-Reichert, P. Verkade. Methods in Cell Biology, vol. 111 (Elsevier, 2012), pp. 139–155. https://doi.org/10.1016/B978-0-12-416026-2.00008-X

  • R. Falcone, C. Jacobsen, J. Kirz, S. Marchesini, D. Shapiro, J. Spence, New directions in X-ray microscopy. Contemp. Phys. 52(4), 293–318 (2011). https://doi.org/10.1080/00107514.2011.589662

    Article  ADS  Google Scholar 

  • J.A. Fessler, Aspire 3.0 user’s guide: a sparse iterative reconstruction library. Technical report, Technical Report 293, Communications and Signal Processing Laboratory, Department of EECS, University of Michigan, Ann Arbor (1995)

    Google Scholar 

  • J.A. Fessler, Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography. IEEE Trans. Image Process. 5(3), 493–506 (1996)

    Article  ADS  Google Scholar 

  • E. Fogelqvist, M. Kördel, V. Carannante, B. Önfelt, H.M. Hertz, Laboratory cryo x-ray microscopy for 3D cell imaging. Sci. Rep. 7(1), 13433 (2017)

    Google Scholar 

  • D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen, Tomopy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21(5), 1188–1193 (2014)

    Article  Google Scholar 

  • B.N.G. Giepmans, The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006). https://doi.org/10.1126/science.1124618

    Article  ADS  Google Scholar 

  • B.N. Giepmans, T.J. Deerinck, B.L. Smarr, Y.Z. Jones, M.H. Ellisman, Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods 2(10), 743 (2005)

    Google Scholar 

  • P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972). https://doi.org/10.1016/0022-5193(72)90180-4

  • B.M. Good, A.I. Su, Crowdsourcing for bioinformatics. Bioinformatics 29(16), 1925–1933 (2013)

    Article  Google Scholar 

  • M.L. Gros, C. Knoechel, M. Uchida, D. Parkinson, G. McDermott, C. Larabell, 2.6 visualizing sub-cellular organization using soft x-ray tomography, in Comprehensive Biophysics, ed. by E.H. Egelman (Elsevier, Amsterdam, 2012), pp. 90–110. ISBN 978-0-08-095718-0. https://doi.org/10.1016/B978-0-12-374920-8.00212-5

    Chapter  Google Scholar 

  • L. Guo, Y. Guan, C. Wei, Y. Hu, Y. Tian, G. Liu, The study of radiation damage of yeast cells in cryo-soft x-ray tomography, in Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016, vol. 10255 (International Society for Optics and Photonics, 2017), p. 102551Q

    Google Scholar 

  • M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION. J. Microsc. 198(2), 82–87 (2000). https://doi.org/10.1046/j.1365-2818.2000.00710.x

    Article  Google Scholar 

  • M.G. Gustafsson, L. Shao, P.M. Carlton, C.J.R. Wang, I.N. Golubovskaya, W.Z. Cande, D.A. Agard, J.W. Sedat, Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94(12), 4957–4970 (2008). https://doi.org/10.1529/biophysj.107.120345

    Article  Google Scholar 

  • W. Haddad, I. McNulty, J.E. Trebes, E. Anderson, et al., Ultrahigh-resolution x-ray tomography. Science 266(5188), 1213 (1994)

    Google Scholar 

  • N. Hafi, M. Grunwald, L.S. Van Den Heuvel, T. Aspelmeier, J.-H. Chen, M. Zagrebelsky, O.M. Schütte, C. Steinem, M. Korte, A. Munk, et al., Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods 11(5), 579 (2014)

    Google Scholar 

  • C. Hagen, P. Guttmann, B. Klupp, S. Werner, S. Rehbein, T.C. Mettenleiter, G. Schneider, K. Grünewald, Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells. J. Struct. Biol. 177(2), 193–201 (2012). https://doi.org/10.1016/j.jsb.2011.12.012

    Article  Google Scholar 

  • C. Hagen, S. Werner, S. Carregal-Romero, A.N. Malhas, B.G. Klupp, P. Guttmann, S. Rehbein, K. Henzler, T.C. Mettenleiter, D.J. Vaux, et al., Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft x-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells. Ultramicroscopy 146, 46–54 (2014)

    Article  Google Scholar 

  • E. Hanssen, C. Knoechel, M. Dearnley, M.W. Dixon, M.L. Gros, C. Larabell, L. Tilley, Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J. Struct. Biol. 177(2), 224–232 (2012). https://doi.org/10.1016/j.jsb.2011.09.003

    Article  Google Scholar 

  • M. Harkiolaki, M.C. Darrow, M.C. Spink, E. Kosior, K. Dent, E. Duke, Cryo-soft x-ray tomography: using soft x-rays to explore the ultrastructure of whole cells. Emerg. Top. Life Sci. 2(1), 81–92 (2018)

    Article  Google Scholar 

  • B. Henke, E. Gullikson, J. Davis, X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54(2), 181–342 (1993). https://doi.org/10.1006/adnd.1993.1013

    Article  ADS  Google Scholar 

  • H. Hertz, O. von Hofsten, M. Bertilson, U. Vogt, A. Holmberg, J. Reinspach, D. Martz, M. Selin, A. Christakou, J. Jerlström-Hultqvist, et al., Laboratory cryo soft x-ray microscopy. J. Struct. Biol. 177(2), 267–272 (2012)

    Article  Google Scholar 

  • J.B. Heymann, D.M. Belnap, Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157(1), 3–18 (2007). https://doi.org/10.1016/j.jsb.2006.06.006

    Article  Google Scholar 

  • M. Holler, A. Diaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, O. Bunk, X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Sci. Rep. 4, 3857 (2014)

    Article  ADS  Google Scholar 

  • H.H. Hopkins, On the diffraction theory of optical images. Proc. R. Soc. A Math. Phys. Eng. Sci. 217(1130), 408–432 (1953). https://doi.org/10.1098/rspa.1953.0071

    ADS  MathSciNet  MATH  Google Scholar 

  • S.F. Horne, J. Silterra, W. Holber, A compact soft X-ray microscope using an electrode-less Z-pinch source. J. Phys. Conf. Ser. 186(1), 012028 (2009). http://stacks.iop.org/1742-6596/186/i=1/a=012028

  • B. Huang, Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14(1), 10–14 (2010)

    Article  Google Scholar 

  • X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A.M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, et al., Soft x-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103(19):198101 (2009)

    Google Scholar 

  • L. Jochum, W. Meyer-Ilse, Partially coherent image formation with x-ray microscopes. Appl. Opt. 34(22), 4944 (1995). https://doi.org/10.1364/ao.34.004944

  • R. Kaufmann, C. Hagen, K. Grünewald, Fluorescence cryo-microscopy: current challenges and prospects. Curr. Opin. Chem. Biol. 20, 86–91 (2014a)

    Article  Google Scholar 

  • R. Kaufmann, P. Schellenberger, E. Seiradake, I.M. Dobbie, E.Y. Jones, I. Davis, C. Hagen, K. Grünewald, Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14(7), 4171–4175 (2014b)

    Article  ADS  Google Scholar 

  • K.-J. Kim, Characteristics of synchrotron radiation, in AIP Conference Proceedings (AIP Publishing, 1989). https://doi.org/10.1063/1.38046

    Google Scholar 

  • K.W. Kim, Y. Kwon, K.-Y. Nam, J.-H. Lim, K.-G. Kim, K.S. Chon, B.H. Kim, D.E. Kim, J. Kim, B.N. Ahn, H.J. Shin, S. Rah, K.-H. Kim, J.S. Chae, D.G. Gweon, D.W. Kang, S.H. Kang, J.Y. Min, K.-S. Choi, S.E. Yoon, E.-A. Kim, Y. Namba, K.-H. Yoon, Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution. Phys. Med. Biol. 51(6), N99–N107 (2006). https://doi.org/10.1088/0031-9155/51/6/n01

    Article  Google Scholar 

  • J. Kirz, C. Jacobsen, M. Howells, Soft x-ray microscopes and their biological applications. Q. Rev. Biophys. 28(1), 33–130 (1995)

    Article  Google Scholar 

  • J. Klukowska, G.T. Herman, J. Otón, R. Marabini, J.-M. Carazo, The soft x-ray transform. Inverse Prob. 30(12), 125015 (2014). https://doi.org/10.1088/0266-5611/30/12/125015

  • C. Knöchel, Anwendung und Anpassung tomographischer Verfahren in der Röntgenmikroskopie (Logos-Verlag, Berlin, 2005)

    Google Scholar 

  • B.G. Kopek, G. Shtengel, C.S. Xu, D.A. Clayton, H.F. Hess, Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc. Natl. Acad. Sci. 109(16), 6136–6141 (2012)

    Article  ADS  Google Scholar 

  • J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)

    Article  Google Scholar 

  • W. Kukulski, M. Schorb, S. Welsch, A. Picco, M. Kaksonen, J.A. Briggs, Correlated fluorescence and 3d electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192(1), 111–119 (2011)

    Article  Google Scholar 

  • C.A. Larabell, M.A. Le Gros, X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol. Biol. Cell 15(3), 957–962 (2004). https://doi.org/10.1091/mbc.e03-07-0522

    Article  Google Scholar 

  • C.A. Larabell, K.A. Nugent, Imaging cellular architecture with X-rays. Curr. Opin. Struct. Biol. 20(5), 623–631 (2010). https://doi.org/10.1016/j.sbi.2010.08.008

    Article  Google Scholar 

  • H. Legall, G. Blobel, H. Stiel, W. Sandner, C. Seim, P. Takman, D.H. Martz, M. Selin, U. Vogt, H.M. Hertz, D. Esser, H. Sipma, J. Luttmann, M. Höfer, H.D. Hoffmann, S. Yulin, T. Feigl, S. Rehbein, P. Guttmann, G. Schneider, U. Wiesemann, M. Wirtz, W. Diete, Compact x-ray microscope for the water window based on a high brightness laser plasma source. Opt. Express 20(16), 18362 (2012). https://doi.org/10.1364/oe.20.018362

  • A. Leis, B. Rockel, L. Andrees, W. Baumeister, Visualizing cells at the nanoscale. Trends Biochem. Sci. 34(2), 60–70 (2009). https://doi.org/10.1016/j.tibs.2008.10.011

    Article  Google Scholar 

  • M. Le Gros, G. McDermott, M. Uchida, C. Knoechel, C. Larabell, High-aperture cryogenic light microscopy. J. Microsc. 235(1), 1–8 (2009)

    Article  MathSciNet  Google Scholar 

  • M.A. Le Gros, G. McDermott, B.P. Cinquin, E.A. Smith, M. Do, W.L. Chao, P.P. Naulleau, C.A. Larabell, Biological soft X-ray tomography on beamline 2.1 at the advanced light source. J. Synchrotron Radiat. 21(6), 1370–1377 (2014)

    Google Scholar 

  • M.A. Le Gros, E.J. Clowney, A. Magklara, A. Yen, E. Markenscoff-Papadimitriou, B. Colquitt, M. Myllys, M. Kellis, S. Lomvardas, C.A. Larabell, Soft x-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo. Cell Rep. 17(8), 2125–2136 (2016)

    Article  Google Scholar 

  • F. Li, Y. Guan, Y. Xiong, X. Zhang, G. Liu, Y. Tian, Method for extending the depth of focus in x-ray microscopy. Opt. Express 25(7), 7657–7667 (2017)

    Article  ADS  Google Scholar 

  • Y. Liu, J. Wang, Y. Hong, Z. Wang, K. Zhang, P.A. Williams, P. Zhu, J.C. Andrews, P. Pianetta, Z. Wu, Extended depth of focus for transmission x-ray microscope. Opt. Lett. 37(17), 3708–3710 (2012). https://doi.org/10.1364/OL.37.003708

    Article  ADS  Google Scholar 

  • J. Liu, F. Li, L. Chen, Y. Guan, L. Tian, Y. Xiong, G. Liu, Y. Tian, Quantitative imaging of candida utilis and its organelles by soft x-ray nano-ct. J. Microsc. 270(1), 64–70 (2018a)

    Article  Google Scholar 

  • T.-L. Liu, S. Upadhyayula, D.E. Milkie, V. Singh, K. Wang, I.A. Swinburne, K.R. Mosaliganti, Z.M. Collins, T.W. Hiscock, J. Shea, A.Q. Kohrman, T.N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E.M. Meyerowitz, D. Hockemeyer, D.G. Drubin, B.L. Martin, D. Q. Matus, M. Koyama, S.G. Megason, T. Kirchhausen, E. Betzig, Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360(6386) (2018b). ISSN 0036-8075. https://doi.org/10.1126/science.aaq1392

  • V. Lučić, A.H. Kossel, T. Yang, T. Bonhoeffer, W. Baumeister, A. Sartori, Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160(2), 146–156 (2007)

    Article  Google Scholar 

  • I. Luengo, M.C. Darrow, M.C. Spink, Y. Sun, W. Dai, C.Y. He, W. Chiu, T. Pridmore, A.W. Ashton, E.M. Duke, M. Basham, A.P. French, Survos: super-region volume segmentation workbench. J. Struct. Biol. 198(1), 43–53 (2017). ISSN 1047-8477. https://doi.org/10.1016/j.jsb.2017.02.007

  • M.E. Martone, T.J. Deerinck, N. Yamada, E. Bushong, M.H. Ellisman, Correlated 3D light and electron microscopy: use of high voltage electron microscopy and electron tomography for imaging large biological structures. J. Histotechnol. 23(3), 261–270 (2000)

    Article  Google Scholar 

  • G. McDermott, M.A.L. Gros, C.G. Knoechel, M. Uchida, C.A. Larabell, Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol. 19(11), 587–595 (2009). https://doi.org/10.1016/j.tcb.2009.08.005

    Article  Google Scholar 

  • G. McDermott, D.M. Fox, L. Epperly, M. Wetzler, A.E. Barron, M.A. Le Gros, C.A. Larabell, Visualizing and quantifying cell phenotype using soft x-ray tomography. Bioessays 34(4), 320–327 (2012a)

    Article  Google Scholar 

  • G. McDermott, M.A. Le Gros, C.A. Larabell, Visualizing cell architecture and molecular location using soft x-ray tomography and correlated cryo-light microscopy. Annu. Rev. Phys. Chem. 63, 225–239 (2012b)

    Article  ADS  Google Scholar 

  • S.G. Megason, S.E. Fraser, Imaging in systems biology. Cell 130(5), 784–795 (2007)

    Article  Google Scholar 

  • J. Miao, K.O. Hodgson, T. Ishikawa, C.A. Larabell, M.A. LeGros, Y. Nishino, Imaging whole escherichia coli bacteria by using single-particle x-ray diffraction. Proc. Natl. Acad. Sci. 100(1), 110–112 (2003)

    Article  ADS  Google Scholar 

  • A.G. Michette, I.C.E. Turcu, M.S. Schulz, M.T. Browne, G.R. Morrison, P. Fluck, C.J. Buckley, G.F. Foster, Scanning x-ray microscopy using a laser-plasma source. Rev. Sci. Instrum. 64(6), 1478 (1993). https://doi.org/10.1063/1.1144067

  • A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, J. Kieffer, The pyhst2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014)

    Article  ADS  Google Scholar 

  • M. Myllys, V. Ruokolainen, V. Aho, E.A. Smith, S. Hakanen, P. Peri, A. Salvetti, J. Timonen, V. Hukkanen, C.A. Larabell, et al., Herpes simplex virus 1 induces egress channels through marginalized host chromatin. Sci. Rep. 6, 28844 (2016)

    Article  ADS  Google Scholar 

  • F. Natterer, Computerized Tomography (Vieweg+Teubner Verlag, Wiesbaden, 1986), pp. 1–8. ISBN 978-3-663-01409-6. https://doi.org/10.1007/978-3-663-01409-6_1

    MATH  Google Scholar 

  • J. Otón, C. Sorzano, E. Pereiro, J. Cuenca-Alba, R. Navarro, J.M. Carazo, R. Marabini, Image formation in cellular X-ray microscopy. J. Struct. Biol. 178(1), 29–37 (2012). https://doi.org/10.1016/j.jsb.2012.01.006

    Article  Google Scholar 

  • J. Otón, E. Pereiro, J.J. Conesa, F.J. Chichón, D. Luque, J.M. Rodríguez, A.J. Pérez-Berná, C.O.S. Sorzano, J. Klukowska, G.T. Herman, et al., Xtend: extending the depth of field in cryo soft x-ray tomography. Sci. Rep. 7, 45808 (2017). https://doi.org/10.1038/srep45808

    Article  ADS  Google Scholar 

  • D.Y. Parkinson, C. Knoechel, C. Yang, C.A. Larabell, M.A. Le Gros, Automatic alignment and reconstruction of images for soft X-ray tomography. J. Struct. Biol. 177(2), 259–266 (2012)

    Article  Google Scholar 

  • D.Y. Parkinson, L.R. Epperly, G. McDermott, M.A. Le Gros, R.M. Boudreau, C.A. Larabell, Nanoimaging cells using soft X-ray tomography, in Nanoimaging: Methods and Protocols, ed. by A.A. Sousa (Humana Press, Totowa, 2013), pp. 457–481. https://doi.org/10.1007/978-1-62703-137-0_25

    Chapter  Google Scholar 

  • D.M. Pelt, J.A. Sethian, A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. 115(2), 254–259 (2018). https://doi.org/10.1073/pnas.1715832114

    Article  MathSciNet  Google Scholar 

  • E. Pereiro, J. Nicolás, S. Ferrer, M.R. Howells, A soft X-ray beamline for transmission X-ray microscopy at ALBA. J. Synchrotron Radiat. 16(4), 505–512 (2009). https://doi.org/10.1107/s0909049509019396

    Article  Google Scholar 

  • J. Radon, On determination of functions by their integral values along certain multiplicities. Berichte der Sächische Akademie der Wissenschaften Leipzig, (Germany) 69, 262–277 (1917)

    Google Scholar 

  • S. Rehbein, S. Heim, P. Guttmann, S. Werner, G. Schneider, Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction. Phys. Rev. Lett. 103(11), 110801 (2009)

    Google Scholar 

  • H.R. Roth, L. Lu, A. Seff, K.M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, R.M. Summers, A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2014), pp. 520–527

    Google Scholar 

  • M.S. Roth, S.J. Cokus, S.D. Gallaher, A. Walter, D. Lopez, E. Erickson, B. Endelman, D. Westcott, C.A. Larabell, S.S. Merchant, et al., Chromosome-level genome assembly and transcriptome of the green alga chromochloris zofingiensis illuminates astaxanthin production. Proc. Natl. Acad. Sci. 114(21), E4296–E4305 (2017)

    Article  Google Scholar 

  • L. Rymell, H. Hertz, Droplet target for low-debris laser-plasma soft X-ray generation. Opt. Commun. 103(1–2), 105–110 (1993). https://doi.org/10.1016/0030-4018(93)90651-k

    Article  ADS  Google Scholar 

  • P. Schellenberger, R. Kaufmann, C.A. Siebert, C. Hagen, H. Wodrich, K. Grünewald, High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014)

    Article  Google Scholar 

  • L. Schermelleh, P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt, J.W. Sedat, Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881), 1332–1336 (2008). https://doi.org/10.1126/science.1156947

    Article  ADS  Google Scholar 

  • G. Schneider, G. Denbeaux, E. Anderson, A. Pearson, W. Bates, S. Vogt, C. Knochen, M.A. Meyer, E. Zschech, High resolution X-ray tomography with applications in biology and materials science. J. Phys. IV 104, 607–613 (2003). https://doi.org/10.1051/jp4:20030155

    Google Scholar 

  • G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J.B. Heymann, W.G. Müller, J.G. McNally, Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7(12), 985–987 (2010). https://doi.org/10.1038/nmeth.1533

    Article  Google Scholar 

  • G. Schneider, P. Guttmann, S. Rehbein, S. Werner, R. Follath, Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging. J. Struct. Biol. 177(2), 212–223 (2012). https://doi.org/10.1016/j.jsb.2011.12.023

    Article  Google Scholar 

  • M. Selin, E. Fogelqvist, A. Holmberg, P. Guttmann, U. Vogt, H.M. Hertz, 3D simulation of the image formation in soft x-ray microscopes. Opt. Express 22(25), 30756–30768 (2014)

    Article  ADS  Google Scholar 

  • M. Selin, E. Fogelqvist, S. Werner, H.M. Hertz, Tomographic reconstruction in soft x-ray microscopy using focus-stack back-projection. Opt. Lett. 40(10), 2201–2204 (2015)

    Article  ADS  Google Scholar 

  • D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A.M. Neiman, D. Sayre, Biological imaging by soft x-ray diffraction microscopy. Proc. Natl. Acad. Sci. 102(43), 15343–15346 (2005). https://doi.org/10.1073/pnas.0503305102

    Article  ADS  Google Scholar 

  • C.J.R. Sheppard, Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A 21(5), 828–831 (2004). https://doi.org/10.1364/JOSAA.21.000828

    Article  ADS  Google Scholar 

  • C. Sheppard, X. Mao, Three-dimensional imaging in a microscope. JOSA A 6(9), 1260–1269 (1989)

    Article  ADS  Google Scholar 

  • A. Shkolyar, A. Gefen, D. Benayahu, H. Greenspan, Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 743–746 (2015)

    Google Scholar 

  • J. Singla, K.M. McClary, K.L. White, F. Alber, A. Sali, R.C. Stevens, Opportunities and challenges in building a spatiotemporal multi-scale model of the human pancreatic β cell. Cell 173(1), 11–19 (2018)

    Article  Google Scholar 

  • M. Slaney, A.C. Kak, L.E. Larsen, Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microwave Theory Tech. 32(8), 860–874 (1984)

    Article  ADS  Google Scholar 

  • E.A. Smith, B.P. Cinquin, G. McDermott, M.A. Le Gros, D.Y. Parkinson, H.T. Kim, C.A. Larabell, Correlative microscopy methods that maximize specimen fidelity and data completeness, and improve molecular localization capabilities. J. Struct. Biol. 184(1), 12–20 (2013)

    Article  Google Scholar 

  • E.A. Smith, B.P. Cinquin, M. Do, G. McDermott, M.A. Le Gros, C.A. Larabell, Correlative cryogenic tomography of cells using light and soft x-rays. Ultramicroscopy 143, 33–40 (2014a)

    Article  Google Scholar 

  • E.A. Smith, G. McDermott, M. Do, K. Leung, B. Panning, M.A. Le Gros, C.A. Larabell, Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys. J. 107(8), 1988–1996 (2014b)

    Article  ADS  Google Scholar 

  • A. Sorrentino, J. Nicolás, R. Valcárcel, F.J. Chichón, M. Rosanes, J. Avila, A. Tkachuk, J. Irwin, S. Ferrer, E. Pereiro, MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging. J. Synchrotron Radiat. 22(4), 1112–1117 (2015). https://doi.org/10.1107/s1600577515008632

    Article  Google Scholar 

  • N. Streibl, Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 2(2), 121 (1985). https://doi.org/10.1364/josaa.2.000121

  • Y.-J. Su, H.-W. Fu, S.-C. Chung, H.-S. Fung, D.-G. Liu, L.-J. Huang, H.-Y. Yan, Y.-C. Chou, G.-C. Yin, L.-J. Lai, Design of the soft x-ray tomography beamline at Taiwan photon source, in Proceedings of the 12th International Conference on Synchrotron Radiation Instrumentation. (AIP Publishing, 2016). https://doi.org/10.1063/1.4952869

    Google Scholar 

  • S. Subramaniam, Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr. Opin. Microbiol. 8(3), 316–322 (2005)

    Article  Google Scholar 

  • S. Trattner, M. Feigin, H. Greenspan, N. Sochen, Validity criterion for the born approximation convergence in microscopy imaging. JOSA A 26(5), 1147–1156 (2009)

    Article  ADS  Google Scholar 

  • R.Y. Tsien, Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579(4), 927–32 (2005)

    Article  Google Scholar 

  • M. Uchida, Y. Sun, G. McDermott, C. Knoechel, M.A. Le Gros, D. Parkinson, D.G. Drubin, C.A. Larabell, Quantitative analysis of yeast internal architecture using soft x-ray tomography. Yeast 28(3), 227–236 (2011)

    Article  Google Scholar 

  • W. van Aarle, W.J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K.J. Batenburg, J. Sijbers, Fast and flexible x-ray tomography using the astra toolbox. Opt. Express 24(22), 25129–25147 (2016)

    Article  ADS  Google Scholar 

  • C. Van Rijnsoever, V. Oorschot, J. Klumperman, Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat. Methods 5(11), 973 (2008)

    Google Scholar 

  • N. Varsano, T. Dadosh, S. Kapishnikov, E. Pereiro, E. Shimoni, X. Jin, H.S. Kruth, L. Leiserowitz, L. Addadi, Development of correlative cryo-soft x-ray tomography and stochastic reconstruction microscopy. A study of cholesterol crystal early formation in cells. J. Am. Chem. Soc. 138(45), 14931–14940 (2016)

    Google Scholar 

  • O. von Hofsten, P.A. Takman, U. Vogt, Simulation of partially coherent image formation in a compact soft X-ray microscope. Ultramicroscopy 107(8), 604–609 (2007). https://doi.org/10.1016/j.ultramic.2006.12.001

    Article  Google Scholar 

  • D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, G. Schmahl, Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 84(3–4), 185–197 (2000). ISSN 0304-3991. https://doi.org/10.1016/S0304-3991(00)00034-6

  • A. Weiner, S. Kapishnikov, E. Shimoni, S. Cordes, P. Guttmann, G. Schneider, M. Elbaum, Vitrification of thick samples for soft x-ray cryo-tomography by high pressure freezing. J. Struct. Biol. 181(1), 77–81 (2013). ISSN 1047-8477. https://doi.org/10.1016/j.jsb.2012.10.005

  • T. Zeev-Ben-Mordehai, C. Hagen, K. Grünewald, A cool hybrid approach to the herpesvirus ‘life’ cycle. Curr. Opin. Virol. 5, 42–49 (2014)

    Article  Google Scholar 

  • W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, D. Shen, Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Biological and Environmental Research (DE-AC02-05CH11231), the National Center for Research Resources of the National Institutes of Health (P41RR019664) and the National Institutes of General Medicine of the National Institutes of Health (P41GM103445), the Gordon and Betty Moore Foundation, and the Chan Zuckerberg Initiative. V.W. is supported by a German Research Foundation research fellowship WE 6221/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Larabell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ekman, A. et al. (2019). Putting Molecules in the Picture: Using Correlated Light Microscopy and Soft X-Ray Tomography to Study Cells. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_43-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_43-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Putting Molecules in the Picture: Using Correlated Light Microscopy and Soft X-Ray Tomography to Study Cells
    Published:
    06 July 2019

    DOI: https://doi.org/10.1007/978-3-319-04507-8_43-3

  2. Putting Molecules in the Picture: Using Correlated Light Microscopy and Soft X-Ray Tomography to Study Cells
    Published:
    07 March 2019

    DOI: https://doi.org/10.1007/978-3-319-04507-8_43-2

  3. Original

    Putting Molecules in the Picture: Using Correlated Light Microscopy and Soft X-ray Tomography to Study Cells
    Published:
    28 July 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_43-1