Skip to main content

High Speed Imaging and Spectroscopy with Low Energy X-Rays

Synchrotron Light Sources and Free-Electron Lasers

Abstract

Counting, imaging, and spectroscopic measurements of X-rays at low energies used in synchrotron and Free Electron Laser (FEL) science (30 eV up to 2 keV) all require detectors with unique properties. As the penetration depth of low-energy X-rays in, for instance, silicon in the above energy range varies from 40 nm to \(10\,\upmu \mathrm{m}\), special attention must be given to the properties of the radiation entrance window. And because the number of generated signal charges (electron-hole pairs) is low (approximately 27 signal charges for 100 eV and 540 for 2 keV), the detector systems must be operated with very low electronic noise. This is especially important if standard imaging and spectroscopy are to be performed simultaneously, at low-signal-level detection, in the presence of experimental and instrument background radiation. As the local photon intensities per unit area can be as high as 105 X-rays/s/pixel, long-term stability, especially radiation hardness, is an important requirement. Given these requirements for readout frame rates below 1 kHz, charge-coupled devices (CCDs) have proven their usefulness in experiments at X-ray Free Electron Laser sources. Two types of CCDs will be described: MOSCCDs (Metal Oxide Semiconductor) and pnCCDs. The basic functional principles will be shown as well as the achieved performance figures, as demonstrated in real experiments. Next, the physical limitations of the measurement precision will be discussed. Finally, attention will be given to some options for future CCD architectures and operations and a trade-off between CCDs and CMOS active pixel sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The penetration or absorption depth is the length where the incident photon intensity is reduced to 1/e.

  2. 2.

    This is correct in case the signal charge cloud arriving in the potential well of the pixel structure is less than the pixel size.

  3. 3.

    Sensor means: detector chip in combination with on-chip electronics.

  4. 4.

    The peak-to-background (P/B) ratio is defined as the peak intensity at 5.9 keV divided by the average number of counts in the energy range from 800 to 1,200 eV. The P/B ratio is a measure for the instrument and detector background and indicates how well weak X-ray features in the spectrum can be separated from very prominent X-ray lines.

References

  • A. Abboud, S. Send, R. Hartmann et al., Applications of an energy-dispersive pnCCD for X-ray reflectivity: investigation of interdiffusion in Fe-Pt multilayers. Phys. Status Solidi (a), 208(11), 2601–2607 (2011)

    Google Scholar 

  • A. Abboud, S. Send, N. Pashniak et al., Sub-pixel resolution of a pnCCD for X-ray white beam applications. J. Instrum. 8(05), article id. P05005 (2013)

    Google Scholar 

  • C. Brönnimann, Hybrid pixel photon counting X-ray detectors for synchrotron radiation. in Synchrotron Light Sources and Free-Electron Lasers, ed. by E. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings (Springer, Cham, 2015)

    Google Scholar 

  • W. Butler, G. Lutz et al., Low-noise, low power monolithic multiplexing readout electronics for silicon strip detectors. Nucl. Instrum. Methods A273, 778–783 (1988)

    Article  ADS  Google Scholar 

  • P. Denes, D. Doering, H. Padmore et al., A fast, direct x-ray detection charge-coupled device. Rev. Sci. Instrum. 80, 083302 (2009)

    Article  ADS  Google Scholar 

  • E. Gatti, P. Rehak, Semiconductor drift chamber – an application of a novel charge transport scheme. NIMA 225, 608–614 (1983)

    ADS  Google Scholar 

  • E. Gatti, P. Rehak, J. Walton, Silicon drift chambers – first results and optimum processing of signals. NIMA 226, 129–141 (1984)

    Article  ADS  Google Scholar 

  • H. Graafsma, Integrating pixel-array detectors for storage ring and Free-Electron Laser applications in Synchrotron Light Sources and Free-Electron Lasers, ed. by E. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings (Springer, Cham, 2015)

    Google Scholar 

  • S. Granato, R. Andritschke, J. Elbs et al., Characterization of eROSITA PNCCDs. IEEE TNS 60(4), 3150–3157 (2013)

    Google Scholar 

  • N. Gehrels, G. Chincarini, P. Giommi et al., The swift gamma-ray burst mission. Astrophys. J. 611(2), 1005–1020 (2004)

    Article  ADS  Google Scholar 

  • D. Groom, S. Holland, N. Pallaio et al., Back-illuminated, fully-depleted CCD image sensors for use in optical and near-IR astronomy. Nucl. Instrum. Methods A 442(1–3), 216–222 (2000)

    Article  ADS  Google Scholar 

  • R. Hartmann, D. Hauff, P. Lechner et al., Low energy response of silicon pn-junction detectors. NIMA 377(2,3), 191–197 (1996)

    Google Scholar 

  • R. Hartmann, K.-H. Stephan, L. StrĂ¼der, The quantum effciency of pn-detectors from the near infrared to the soft X-ray region. NIMA 439, 216–221 (2000)

    Article  ADS  Google Scholar 

  • S. Hillert, R. Ischebeck, U. MĂ¼ller et al., Test results on the silicon pixel detector for the TTF-FEL beam trajectory monitor. NIMA 458(3), 710–719 (2001)

    Article  ADS  Google Scholar 

  • F. Jansen, D. Lumb, B. Altieri et al., XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001)

    Article  Google Scholar 

  • G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010)

    Google Scholar 

  • W. Leitenberger, R. Hartmann, U. Pietsch et al., Application of a pnCCD in X-ray diffraction: a three-dimensional X-ray detector. J. Synchrotron. Radiat. 15, 449 (2008)

    Article  Google Scholar 

  • G. Lutz, Semiconductor Radiation Detectors (Springer, Heidelberg, 2007)

    Book  Google Scholar 

  • P. Majewski, S. Aschauer, F. Aschauer et al., Calibration measurements on the DEPFET Detectors for the MIXS instrument on BepiColombo. IEEE TNS 59(5), 2479–2486 (2012)

    Google Scholar 

  • P. Majewski, S. Aschauer, F. Aschauer et al., Calibration measurements on the DEPFET Detectors for the MIXS instrument on BepiColombo. Exp. Astron. 37(3), 525–538 (2014)

    Article  ADS  Google Scholar 

  • K. Mitsuda, M. Bautz, H. Inoue et al., The X-ray observatory Suzaku. PASJ 59(SP1), 1–7 (2007)

    Google Scholar 

  • K. MĂ¼ller, H. Ryll, I. Ordavo et al., Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl. Phys. Lett. 101(21), id. 212110 (2012)

    Google Scholar 

  • I. Ordavo, S. Ihle, V. Arkadiev et al., A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurement. NIMA 654(1), 250–257 (2011)

    Article  ADS  Google Scholar 

  • H. Philipp, M. Hromalik, M. Tate et al., Pixel array detector for X-ray free electron laser experiments. Nucl. Instrum. Methods A 649(1), 67–69 (2011)

    Article  ADS  Google Scholar 

  • U. Pietsch, S. Send, A. Abboud et al., Application of energy-dispersive pnCCD detector in material science using hard X-rays. To be published in TMS (2015)

    Google Scholar 

  • M. Porro, L. Andricek, L. Bombelli et al., Expected performance of the DePFET sensor with signal compression: a large format X-ray imager with mega-frame readout capability for the European XFEL. Nucl. Instrum. Methods A 624, 509–519 (2010)

    Article  ADS  Google Scholar 

  • M. Porro, D. Bianchi, G. De Vita et al., VERITAS: A 128-channel ASIC for the readout of pnCCDs and DEPFET arrays for X-ray imaging, spectroscopy and X-ray FEL applications. Experimental results and new designs, in Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia (IEEE, 2013). IEEE Trans. Nucl. Sci. 60(1), 446–455

    Google Scholar 

  • P. Predehl, R. Andritschke, H. Böhringer et al., eROSITA on SRG, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, ed. by M. Arnaud, S.S Murray, T. Takahashi. Proceedings of the SPIE, vol. 7732 (2010), 10pp. article id. 77320U

    Google Scholar 

  • S. Rabien, N. Ageorges, L. Barl et al., ARGOS: the laser guide star system for the LBT. SPIE 7736, id. 77360E-77360E-12 (2010)

    Google Scholar 

  • B. Rudek, S.-K. Son, L. Foucar et al., Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photon. 6(12), 858–865 (2012)

    Article  ADS  Google Scholar 

  • D. Rupp, M. Adolph, T. Gorkover et al., Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses. New J. Phys. 14(5), 055016 (2012)

    Google Scholar 

  • O. Scharf, S. Ihle, I. Ordavo et al., Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera. Anal. Chem. 83, 2532–2538 (2011)

    Article  Google Scholar 

  • D. Schlosser, M. Huth, R. Hartmann et al., Expanding the energy range of pnCCD detectors by coupling to CsI(Tl) scintillators – experimental results. NIMA (2015, submitted)

    Google Scholar 

  • J. Schmidt, R. Hartmann, P. Holl et al., Extending the dynamic range of fully depleted pnCCDs. JINST 9(12), article id. P10008 (2014)

    Google Scholar 

  • M. Seibert, T. Ekeberg, F. Maia et al., Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332), 78–81 (2011)

    Article  ADS  Google Scholar 

  • S. Send, A. Abboud, R. Hartmann et al., Characterization of a pnCCD for applications with synchrotron radiation. NIMA 711 132–142 (2013)

    Article  ADS  Google Scholar 

  • T. Stadlbauer, B. Aschenbach (2001) X-ray Spectroscopy of Tycho’s Supernova Remnant 2001AGM....18S0103S, in Meeting JENAM 2001 of the European Astronomical Society and the Astronomische Gesellschaft, Munich, 10–15 Sept 2001, abstract #MS 01 03. Bibliographic Code: 2001AGM....18S0103S

    Google Scholar 

  • R. Stover, M. Wei, Y. Lee et al., High-performance CCD on high-resistivity silicon. Proc. SPIE 3505, 13, 1 (1998)

    Google Scholar 

  • L. StrĂ¼der, High resolution imaging X-ray spectrometers – a review. NIMA 454, 73–113 (2000)

    Article  ADS  Google Scholar 

  • L. StrĂ¼der, H. Bräuninger, M. Maier et al., The MPI/AIT X-ray imager (MAXI) – high speed pn-CCDs for X-ray detection. NIMA 288, 227–235 (1990)

    Article  ADS  Google Scholar 

  • L. StrĂ¼der, H. Bräuninger, U. Briel et al., A 36 cm2 large monolythic pn-charge coupled device x-ray detector for the European XMM satellite mission. Rev. Sci. Instrum. 68, 4271 (1997)

    Article  ADS  Google Scholar 

  • L. StrĂ¼der, U. Briel, K. Dennerl et al., The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365(1), 18–26 (2001)

    Article  ADS  Google Scholar 

  • L. StrĂ¼der, J. Englhauser, R. Hartmann et al., pn-CCDs on XMM-Newton – 42 months in orbit. NIMA 512, 386–400 (2003)

    Google Scholar 

  • L. StrĂ¼der, S. Epp, D. Rolles et al., Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. NIMA 614, 483–496 (2010)

    Article  ADS  Google Scholar 

  • T. Takahashi, K. Mitsuda, R. Kelly et al., The ASTRO-H X-ray observatory. SPIE 8443, article id. 84431Z, 22pp. (2012)

    Google Scholar 

  • Y. Tanaka, H. Innoue, S. Holt et al., The X-ray astronomy satellite ASCA. PASJ 46(3), L37–L41 (1994)

    ADS  Google Scholar 

  • J.P. Walder, G. Chao, J.F. Genat et al., A low power, wide dynamic range multigain signal processor for the SNAP CCD. IEEE Trans. Nucl. Sci. 51, 1936 (2004)

    Article  ADS  Google Scholar 

  • M. Weisskopf, H. Tananbaum, L. Van Speybroeck et al., Chandra X-Ray Observatory (CXO): overview. SPIE 4012, 2–16 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experimental results shown here are from devices which have been designed, fabricated, tested, and operated by PNSensor. Special thanks go to Robert Hartmann who improved the system over the years. The support of all physicists, technicians, and engineers of PNSensor and PNDetector is very much appreciated. The contribution of the Solid State Physics Group of the University of Siegen is acknowledged. I am grateful to Peter Denes (LBL) who supplied the input for the MOSCCD part. The discussions and support of Julia Schmidt (PNSensor) and Jeff Davis (PNDetector) were important for the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar StrĂ¼der .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

StrĂ¼der, L. (2015). High Speed Imaging and Spectroscopy with Low Energy X-Rays. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    High Speed Imaging and Spectroscopy with Low Energy X-Rays
    Published:
    09 July 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_38-2

  2. Original

    High Speed Imaging and Spectroscopy with Low Energy X-Rays
    Published:
    06 March 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_38-1