Skip to main content

Analysis of Endogenous Metabolites in Human Matrices

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

For several decades, biological matrices have been used to assess the physiological conditions of organisms. The development of analytical techniques and the introduction of more sensitive and accurate methods have enabled to detect endogenous metabolites present in biological matrices and their effect on homeostasis maintenance. Consequently, it has broadened the scope of application of biological matrices in bioanalysis. Biological matrices are used to search new bioindicators of the occurrence and development of different diseases, to assess the body’s response to therapy, and to retrospectively evaluate metabolic changes in the organism over a long period of time, which is particularly useful in toxicology and crime detection methods. The detection of endogenous compounds in biological matrices is performed in the field of -omics sciences such as metabolomics, which involves the study of low-molecular-weight compounds and products of biochemical transformations, i.e., metabolites. Two research strategies are used in metabolomics, namely, targeted and nontargeted metabolomic approach, depending on whether the study is based on the qualitative determination of the widest possible panel of compounds or is a narrow quantitative one restricted to previously selected metabolites. Currently, endogenous metabolites are studied in various biological matrices. This chapter describes the most commonly used human matrices such as blood, urine, and tissues and less common ones (saliva and exhaled breath) as well as unconventional matrices such as hair, nails, tears, sweat, cerebrospinal fluid, ejaculate, and aqueous humor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawley, J. M., & Keevil, B. G. (2016). Endogenous glucocorticoid analysis by liquid chromatography–tandem mass spectrometry in routine clinical laboratories. The Journal of Steroid Biochemistry and Molecular Biology, 162, 27–40.

    Article  CAS  PubMed  Google Scholar 

  2. Bujak, R., Struck-Lewicka, W., Markuszewski, M. J., & Kaliszan, R. (2014). Metabolomics for laboratory diagnostics. Journal of Pharmaceutical and Biomedical Analysis, 113, 108–120.

    Article  PubMed  CAS  Google Scholar 

  3. Grochocki, W., Buszewska-Forajta, M., Macioszek, S., & Markuszewski, M. J. (2019). Determination of urinary Pterins by capillary electrophoresis coupled with LED-induced fluorescence detector. Molecules, 24(6), 1166.

    Article  PubMed Central  CAS  Google Scholar 

  4. Wawrzyniak, R., Kosnowska, A., Macioszek, S., et al. (2018). New plasma preparation approach to enrich metabolome coverage in untargeted metabolomics: Plasma protein bound hydrophobic metabolite release with proteinase K. Scientific Reports, 8(1), 9541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nemkov, T., D’Alessandro, A., & Hansen, K. C. (2015). Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino Acids, 47(11), 2345–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Velenosi, T. J., Thomson, B. K. A., Tonial, N. C., et al. (2019). Untargeted metabolomics reveals N, N, N-trimethyl-L-alanyl-L-proline betaine (TMAP) as a novel biomarker of kidney function. Scientific Reports, 9(1), 6831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen, D. Q., Cao, G., Chen, H., et al. (2019). Identification of se- rum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nature Communications, 10(1), 1476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lim, M. D. (2018). Dried blood spots for Global Health diagnostics and surveillance: Opportunities and challenges. The American Journal of Tropical Medicine and Hygiene, 99(2), 256–265.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smit, P. W., Sollis, K. A., Fiscus, S., et al. (2014). Systematic review of the use of dried blood spots for monitoring HIV viral load and for early infant diagnosis. PLoS One, 9(3), e86461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Koulman, A., Prentice, P., Wong, M. C. Y., et al. (2014). The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics, 10(5), 1018–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drolet, J., Tolstikov, V., Williams, B. A., et al. (2017). Integrated metabolomics assessment of human dried blood spots and urine strips. Metabolites, 7(3), 35.

    Article  PubMed Central  CAS  Google Scholar 

  12. Sussulini, A. (2017). Metabolomics: From fundamentals to clinical applications (Vol. 965). Springer International Publishing.

    Book  Google Scholar 

  13. Bouatra, S., Aziat, F., Mandal, R., et al. (2013). The human urine metabolome. PLoS One, 8(9), e73076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thévenot, E. A., Roux, A., Xu, Y., et al. (2015). Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research, 14(8), 3322–3335.

    Article  PubMed  CAS  Google Scholar 

  15. Burton, C., & Ma, Y. (2019). Current trends in cancer biomarker discovery using urinary metabolomics: Achievements and new challenges. Current Medicinal Chemistry, 26(1), 5–28.

    Article  CAS  PubMed  Google Scholar 

  16. Mathe, E. A., Patterson, A. D., Haznadar, M., et al. (2014). Noninvasive urinary Metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Research, 74(12), 3259–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacyna, J., Wawrzyniak, R., Balayssac, S., et al. (2019). Urinary metabolomic signature of muscle-invasive bladder cancer: A multiplatform approach. Talanta, 202, 572–579.

    Article  CAS  PubMed  Google Scholar 

  18. Wen, C., Zhang, M., Ma, J., et al. (2015). Urine metabolomics in rats after administration of ketamine. Drug Design, Development and Therapy, 9, 717–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia-Perez, I., Posma, J. M., Gibson, R., et al. (2017). Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. The Lancet Diabetes and Endocrinology, 5(3), 184–195.

    Article  PubMed  Google Scholar 

  20. Yumba Mpanga, A., Siluk, D., Jacyna, J., et al. (2018). Targeted metabolomics in bladder cancer: From analytical methods development and validation towards application to clinical samples. Analytica Chimica Acta, 1037, 188–199.

    Article  CAS  PubMed  Google Scholar 

  21. Klepacki, J., Klawitter, J., Klawitter, J., et al. (2015). A high-performance liquid chromatography-tandem mass spectrometry-based targeted metabolomics kidney dysfunction marker panel in human urine. Clinica Chimica Acta, 446, 43–53.

    Article  CAS  Google Scholar 

  22. Want, E. J., Masson, P., Michopoulos, F., et al. (2012). Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols, 8(1), 17–32.

    Article  PubMed  CAS  Google Scholar 

  23. Szerkus, O., Jacyna, J., Wiczling, P., et al. (2016). Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. Journal of Chromatography B, 1029–1030, 48–59.

    Article  CAS  Google Scholar 

  24. Liu, S. Y., Zhang, R. L., Kang, H., et al. (2013). Human liver tissue metabolic profiling research on hepatitis B virus-related hepatocellular carcinoma. World Journal of Gastroenterology, 19(22), 3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartosińska, E., Jacyna, J., Borsuk-De Moor, A., et al. (2018). HPLC-APCI-MS/MS method development and validation for determination of tocotrienols in human breast adipose tissue. Talanta, 176, 108–115.

    Article  PubMed  CAS  Google Scholar 

  26. Bartosińska, E., Jacyna, J., Borsuk-De Moor, A., et al. (2018). Determination of tocopherols and tocotrienols in human breast adipose tissue with the use of high performance liquid chromatography-fluorescence detection. Biomedical Chromatography, 32(12), e4361.

    Article  PubMed  CAS  Google Scholar 

  27. Burdett, T. C., Desjardins, C. A., Logan, R., et al. (2013). Efficient determination of purine metabolites in brain tissue and serum by high-performance liquid chromatography with electrochemical and UV detection. Biomedical Chromatography, 27(1), 122–129.

    Article  CAS  PubMed  Google Scholar 

  28. Bennett, C. D., Kohe, S. E., Gill, S. K., et al. (2018). Tissue metabolite profiles for the characterisation of paediatric cerebellar tumours. Scientific Reports, 8(1), 11992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cacciatore, S., Zadra, G., Bango, C., et al. (2017). Metabolic profiling in formalin-fixed and paraffin-embedded prostate cancer tissues. Molecular Cancer Research, 15(4), 439–447.

    Article  CAS  PubMed  Google Scholar 

  30. Kelly, A. D., Breitkopf, S. B., Yuan, M., et al. (2011). Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: Application in sarcoma. PLoS One, 6(10), e25357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugihara, Y., Rivas, D., Malm, J., et al. (2018). Endogenous expression mapping of malignant melanoma by mass spectrometry imaging. Clinical and Translational Medicine, 7(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, J., & Duan, Y. (2012). Saliva: A potential media for disease diagnostics and monitoring. Oral Oncology, 48(7), 569–577.

    Article  PubMed  Google Scholar 

  33. Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. The Journal of Physiology, 586(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  34. Mikkonen, J., Singh, S., Akhi, R., et al. (2018). Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer. Oncology Letters, 16(5), 6795–6800.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kageyama, G., Saegusa, J., Irino, Y., et al. (2015). Metabolomics analysis of saliva from patients with primary Sjögren’s syndrome. Clinical and Experimental Immunology, 182(2), 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Washio, J., & Takahashi, N. (2016). Metabolomic studies of oral biofilm, oral cancer, and beyond. International Journal of Molecular Sciences, 17(6), 870.

    Article  PubMed Central  CAS  Google Scholar 

  37. Wang, Q., Gao, P., Wang, X., & Duan, Y. (2014). Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clinica Chimica Acta, 427, 79–85.

    Article  CAS  Google Scholar 

  38. Li, Y., Wang, D., Zeng, C., et al. (2018). Salivary metabolomics profile of patients with recurrent aphthous ulcer as revealed by liquid chromatography–tandem mass spectrometry. The Journal of International Medical Research, 46(3), 1052–1062.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nunes, L. A. S., & de Macedo, D. V. (2013). Saliva as a diagnostic fluid in sports medicine: Potential and limitations. Jornal Brasileiro de Patologia e Medicina Laboratorial, 49(4), 247–255.

    Article  Google Scholar 

  40. Teranishi, R., Mon, T. R., Robinson, A. B., et al. (1972). Gas chromatography of volatiles from breath and urine. Analytical Chemistry, 44(1), 18–20.

    Article  CAS  PubMed  Google Scholar 

  41. Behera, B., Joshi, R., Anil Vishnu, G. K., et al. (2019). Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. Journal of Breath Research, 13(2), 024001.

    Article  CAS  PubMed  Google Scholar 

  42. Gaugg, M. T., Nussbaumer-Ochsner, Y., Bregy, L., et al. (2019). Real-time breath analysis reveals specific metabolic signatures of COPD exacerbations. Chest, 156(2), 269–276.

    Article  PubMed  Google Scholar 

  43. Montuschi, P., Paris, D., Melck, D., et al. (2012). NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax, 67(3), 222–228.

    Article  PubMed  Google Scholar 

  44. Tegethoff, M., Raul, J. S., Jamey, C., et al. (2011). Dehydroepiandrosterone in nails of infants: A potential biomarker of intrauterine responses to maternal stress. Biological Psychology, 87(3), 414–420.

    Article  PubMed  Google Scholar 

  45. Ma, Q., Shi, Q., Xu, C. Y., et al. (2018). Development of highly sensitive analysis method for histamine and metabolites in pregnant women’s fingernail by UPLC-ESI-MS. Analytical Sciences, 34(9), 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  46. Delgado-Povedano, M. M., Calderón-Santiago, M., Luque de Castro, M. D., & Priego-Capote, F. (2018). Metabolomics analysis of human sweat collected after moderate exercise. Talanta, 177, 47–65.

    Article  CAS  PubMed  Google Scholar 

  47. Hooton, K., & Li, L. (2017). Nonocclusive sweat collection combined with chemical isotope labeling LC–MS for human sweat metabolomics and mapping the sweat metabolomes at different skin locations. Analytical Chemistry, 89(15), 7847–7851.

    Article  CAS  PubMed  Google Scholar 

  48. Cicalini, I., Rossi, C., Pieragostino, D., et al. (2019). Integrated Lipidomics and metabolomics analysis of tears in multiple sclerosis: An insight into diagnostic potential of lacrimal fluid. International Journal of Molecular Sciences, 20(6), 1265.

    Article  CAS  PubMed Central  Google Scholar 

  49. Locci, E., Stocchero, M., Noto, A., et al. (2019). A 1H NMR metabolomic approach for the estimation of the time since death using aqueous humour: An animal model. Metabolomics, 15(5), 76.

    Article  PubMed  CAS  Google Scholar 

  50. Casado, M., Sierra, C., Batllori, M., et al. (2018). A targeted metabolomic procedure for amino acid analysis in different biological specimens by ultra-high-performance liquid chromatography–tandem mass spectrometry. Metabolomics, 14(6), 76.

    Article  PubMed  CAS  Google Scholar 

  51. Takayama, T., Mizuno, H., Toyo’oka, T., et al. (2019). Isotope corrected chiral and achiral nontargeted metabolomics: An approach for high accuracy and precision metabolomics based on derivatization and its application to cerebrospinal fluid of patients with Alzheimer’s disease. Analytical Chemistry, 91(7), 4396–4404.

    Article  CAS  PubMed  Google Scholar 

  52. Qiao, S., Wu, W., Chen, M., et al. (2017). Seminal plasma metabolomics approach for the diagnosis of unexplained male infertility. PLoS One, 12(8), e0181115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gardner, A., Carpenter, G., & So, P. W. (2020). Salivary metabolomics: From diagnostic biomarker discovery to investigating biological function. Metabolites, 10(2), 47.

    Article  CAS  PubMed Central  Google Scholar 

  54. Kayiklik, A., Guvenmez, O., et al. (2019). Biochemical analysis of aqueous humor in diabetic and non-diabetic patients with cataracts. Ophthalmology Journal, 4, 1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał J. Markuszewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Struck-Lewicka, W., Macioszek, S., Artymowicz, M., Waszczuk-Jankowska, M., Siluk, D., Markuszewski, M.J. (2022). Analysis of Endogenous Metabolites in Human Matrices. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_4

Download citation

Publish with us

Policies and ethics