Skip to main content

Irisflorentin: Advances on Resources, Metabolism, and Pharmacological Activities

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids
  • 16 Accesses

Abstract

Irisflorentin, a common plan-derived natural flavonoid, is one of the major bioactive constituents of plants from Iridaceae family, especially famous traditional Chinese herb Belamcanda chinensis. Since irisflorentin was first reported in 1973, the researches on this compound have lasted for almost 50 years, which ranged from isolation, identification, qualitative and quantitative analysis and methods development, metabolism properties to various bioactivities evaluation and studies on the mechanism of action. In this regard, many isolation and analysis methods developed for irisflorentin have been applied to the quality control for irisflorentin-rich traditional Chinese medicines and related Chinese patent medicine. Meanwhile, irisflorentin was also reported to possess anti-inflammatory, antitumor, antidiabetic, central nervous system, estrogenic activities, and others. The present chapter aimed to comprehensively review the research advances on irisflorentin based on available literatures collected from different authentic scientific databases including Scifinder, Elsevier, and Pubmed. From another perspective, this review also had the purpose to discover the limitations of current researches on irisflorentin, such as the blank research area in the pharmacology in animals, toxicology, and clinical trial, which would provide new research perspectives for the future studies on this compound. Combining the advantages and limitations of existing researches on irisflorentin, we expect that the future research could allow this molecule to be used in clinical and health food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou Baker DH (2022) An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: a comprehensive review based on up to date knowledge. Toxicol Rep 9:445–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal VK, Thappa RK, Agarwal SG et al (1984) Isoflavones of two iris species. Phytochemistry 23:2703–2704

    Article  CAS  Google Scholar 

  • Ahn KS, Noh EJ, Cha K-H et al (2006) Inhibitory effects of irigenin from the rhizomes of Belamcanda chinensis on nitric oxide and prostaglandin E2 production in murine macrophage RAW 264.7 cells. Life Sci 78:2336–2342

    Article  CAS  PubMed  Google Scholar 

  • Ali AA, El-Emary NA, Darwish FM (1993) Studies on the constituents of two iris species. Bull Pharm Sci 16:159–162

    CAS  Google Scholar 

  • Al-Maharik N (2019) Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 36:1156–1195

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Zhao S, Fan X et al (2019) Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: food/herb-drug interactions and structure-activity relationships. Toxicol Appl Pharmacol 369:49–59

    Article  CAS  PubMed  Google Scholar 

  • Bukvicki D, Novakovic M, Ab Ghani N et al (2018) Secondary metabolites from endemic species Iris adriatica Trinajstic ex Mitic (Iridaceae). Nat Prod Res 32:1849–1852

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Peng G (2010) Determination of belamcandin and irisflorentin in Shegan Liyan Koufuye by HPLC. Zhongnan Yaoxue 8:431–434

    CAS  Google Scholar 

  • Chen Y-M, Liu S-P, Lin H-L et al (2015) Irisflorentin improves α-synuclein accumulation and attenuates 6-OHDA-induced dopaminergic neuron degeneration, implication for Parkinson’s disease therapy. Biomedicine 5:24–32

    Article  Google Scholar 

  • De-Eknamkul W, Umehara K, Monthakantirat O et al (2011) QSAR study of natural estrogen-like isoflavonoids and diphenolics from Thai medicinal plants. J Mol Graph Model 29:784–794

    Article  CAS  PubMed  Google Scholar 

  • Duan X-H, Zhang X-W, Qin M et al (2020) Chemical constituents from Pogonatum inflexum. Zhongcaoyao 51:24–29

    Google Scholar 

  • El-Emary NA, Kobayashi Y, Ogihara Y (1980) Two isoflavonoids from the fresh bulbs of Iris tingitana. Phytochemistry 19:1878–1879

    Article  CAS  Google Scholar 

  • Fan X, Bai J, Zhao S et al (2019) Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): from library screening to biological evaluation to structure-activity relationship. Toxicol In Vitro 61:104642

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Bai J, Hu M et al (2020) Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 437:152445

    Article  CAS  PubMed  Google Scholar 

  • Fu R-H, Tsai C-W, Tsai R-T et al (2015) Irisflorentin modifies properties of mouse bone marrow-derived dendritic cells and reduces the allergic contact hypersensitivity responses. Cell Transplant 24:573–588

    Article  PubMed  Google Scholar 

  • Gao Y, Fang L, Liu F et al (2014) Suppressive effects of irisflorentin on LPS-induced inflammatory responses in RAW 264.7 macrophages. Exp Biol Med 239:1018–1024

    Article  Google Scholar 

  • He K-H, Zhang G-C, Chen M-M et al (2013) Simultaneous determination of cinnamic acid and irisflorentin in compound Heishen granules by RP-HPLC. Shenyang Yaoke Daxue Xuebao 30:264

    CAS  Google Scholar 

  • Jeong G-S, An R-B, Oh S-H et al (2007) Cytoprotective activity of Belamcanda chinensis rhizome against glutamate-induced oxidative injury in HT22 cells. Nat Prod Sci 13:101–104

    CAS  Google Scholar 

  • Jia Y-W, Zeng Z-Q, Shi H-L et al (2016) Characterization of in vitro metabolites of irisflorentin by rat liver microsomes using high-performance liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr 30:1363–1370

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Lee YS, Lee S et al (2002) Isoflavonoids from the rhizomes of Belamcanda chinensis and their effects on aldose reductase and sorbitol accumulation in streptozotocin induced diabetic rat tissues. Arch Pharm Res 25:306–312

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Cheon BS, Kim YH et al (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58:759–765

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee C, Jin Q et al (2015) Chemical constituents from Belamcanda chinensis and their inhibitory effects on nitric oxide production in RAW 264.7 macrophage cells. Arch Pharm Res 38:991–997

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Meng F (2019) Irisflorentin suppresses allergic inflammation in mast cells via reducing histamine release and production of pro-inflammatory cytokines. Acta Pol Pharm 76:725–733

    CAS  Google Scholar 

  • Li R, Qin M-J (2012) Constituents of fibrous roots of Iris leptophylla. Shizhen Guoyi Guoyao 23:1611

    CAS  Google Scholar 

  • Li Y, Lu Y, Wei L (1986) Flavonoids of Iris dichotoma pall. Yaoxue Xuebao 21:836

    CAS  Google Scholar 

  • Li J, Zhai Y, Wang Z et al (2012) Determination of irisflorentin in Fanggan spray by HPLC. Erke Yaoxue Zazhi 18:43–45

    Google Scholar 

  • Li S, Li S, Tang Y et al (2016) Ultrafiltration-LC-MS combined with semi-preparative HPLC for the simultaneous screening and isolation of lactate dehydrogenase inhibitors from Belamcanda chinensis. J Sep Sci 39:4533–4543

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li S, Huang Y et al (2017) Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography. J Sep Sci 40:2565–2574

    Article  CAS  PubMed  Google Scholar 

  • Li H-J, Zhang C-T, Du H et al (2019) Chemical composition of Bawei Longzuan granule and its anti-arthritic activity on collagen-induced arthritis in rats by inhibiting inflammatory responses. Chem Biodivers 16:e1900294

    Article  PubMed  Google Scholar 

  • Liang D, Ma Q, Song S et al (2017) Simultaneous determination of five effective components in Yinqiaomabo powder by HPLC. Zhongyao Xinyao Yu Linchuang Yaoli 28:84–87

    CAS  Google Scholar 

  • Liu D, Lin Y, Li Z (2006) Determination of irisflorentin content in Sheganliyan oral liquid. Zhongcaoyao 37:382–383

    CAS  Google Scholar 

  • Liu Z, Wang J, Bi J et al (2011) Separation and purification of three high-purity isoflavonoids from Belamcanda chinensis (L.) DC. By supercritical fluid extraction and high-speed counter-current chromatography. Sep Sci Technol 46:2501–2509

    Article  CAS  Google Scholar 

  • Liu M, Yang S, Jin L et al (2012) Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules 17:6156–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu EYL, Xu ML, Xia Y et al (2019) Activation of G protein-coupled receptor 30 by flavonoids leads to expression of acetylcholinesterase in cultured PC12 cells. Chem Biol Interact 306:147–151

    Article  CAS  PubMed  Google Scholar 

  • Lu Y-N, Fu J, Kong L-Y et al (2017) EGFR antagonism of the irisflorentin from Rhizoma Belamcandae using CMC-online-HPLC-IT-TOF MS system. J Chinese Mass Spectrom Soc 38:425–432

    Google Scholar 

  • Monthakantirat O, De-Eknamkul W, Umehara K et al (2005) Phenolic constituents of the rhizomes of the Thai medicinal plant Belamcanda chinensis with proliferative activity for two breast cancer cell lines. J Nat Prod 68:361–364

    Article  CAS  PubMed  Google Scholar 

  • Morita N, Arisawa M, Kondo Y et al (1973) Constituents of iris genus plants. III. Constituents of Iris florentina L. I. Chem Pharm Bull 21:600–603

    Article  CAS  Google Scholar 

  • Morito K, Hirose T, Kinjo J et al (2001) Interaction of phytoestrogens with estrogen receptors α and β. Biol Pharm Bull 24:351–356

    Article  CAS  PubMed  Google Scholar 

  • Noh D, Choi JG, Lee YB et al (2019) Protective effects of Belamcandae Rhizoma against skin damage by ameliorating ultraviolet-B-induced apoptosis and collagen degradation in keratinocytes. Environ Toxicol 34:1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Purev O, Purevsuren C, Narantuya S et al (2002) New isoflavones and flavanol from Iris potaninii. Chem Pharm Bull 50:1367–1369

    Article  CAS  Google Scholar 

  • Roger B, Jeannot V, Fernandez X et al (2012) Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida lam. Resinoids from Morocco. Phytochem Anal 23:450–455

    Article  CAS  PubMed  Google Scholar 

  • Semwal R, Joshi SK, Semwal RB et al (2021) Health benefits and limitations of rutin-A natural flavonoid with high nutraceutical value. Phytochem Lett 46:119–128

    Article  CAS  Google Scholar 

  • Shawl AS, Dar BA, Vishwapaul (1985) Isoflavones from Iris hookeriana. J Nat Prod 48:849–850

    Article  CAS  Google Scholar 

  • Shen N, Wang T, Gan Q et al (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:132531

    Article  CAS  PubMed  Google Scholar 

  • Singab ANB, Ayoub IM, El-Shazly M et al (2016) Shedding the light on Iridaceae: ethnobotany, phytochemistry and biological activity. Ind Crop Prod 92:308–335

    Article  CAS  Google Scholar 

  • Slusarczyk S, Senol Deniz FS, Wozniak D et al (2019) Selective in vitro and in silico cholinesterase inhibitory activity of isoflavones and stilbenes from Belamcandae chinensis rhizoma. Phytochem Lett 30:261–272

    Article  CAS  Google Scholar 

  • Tao J, Chen L, Du S (2007) Optimization of water extraction condition of Liyan granule by Doehlert design. Zhongyaocai 30:1439–1443

    CAS  PubMed  Google Scholar 

  • Wang A-P, Zhang G-W, Pan J-H et al (2008) Effect of metal ions on the interaction between bovine serum albumin and irisflorentin. Fenxi Kexue Xuebao 24:389–393

    Google Scholar 

  • Wang X, Sun X, Liu J et al (2017) A preliminary study on the temporal changes of transitional components in Huangqin Shegan decoction. Liaoning Zhongyi Zazhi 44:1938–1939

    CAS  Google Scholar 

  • Wang A-D, Xie X-Y, Zeng W-M et al (2020) New α-ditetralonyl glucoside from the green walnut husk of Juglans mandshurica. Nat Prod Res 34:3066–3072

    Article  CAS  PubMed  Google Scholar 

  • Wu S-H, Zhang G-G, Zuo T-T et al (2008) Isolation and identification of chemical constituents from the rhizome of Belamcanda chinensis (L.) DC. Shenyang Yaoke Daxue Xuebao 25:796–799

    CAS  Google Scholar 

  • Xin R-H, Xie J-S, Zheng J-F et al (2013) Determination of Shegan Dilong granules by RP-HPLC and the study of its stability. Zhongguo Xumu Shouyi 40:29–33

    Google Scholar 

  • Xu Y, Ma Y, Xiong J (1999) Isoflavonoids of Iris tectorum. Yunnan Zhiwu Yanjiu 21:125–130

    CAS  Google Scholar 

  • Xu SL, Zhu KY, Bi CWC et al (2013) Flavonoids induce the expression of synaptic proteins, synaptotagmin, and postsynaptic density protein-95 in cultured rat cortical neuron. Planta Med 79:1710–1714

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xi Y, Zheng J et al (2019) Protective effects of irisflorentin on PC12 cells against the injury induced by OGD/R via inhibiting oxidative stress and apoptosis. Lat Am J Pharm 38:1879–1885

    CAS  Google Scholar 

  • Yamaki M, Kato T, Kashihara M et al (1990) Isoflavones of Belamcanda chinensis. Planta Med 56:335

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Qian G, Yang R et al (2021) Huanglong antitussive granule relieves acute asthma through regulating pulmonary lipid homeostasis. Front Pharmacol 12:656756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W-J, Zhang W-D, Wang Y et al (2012) Influence of combination of Rhizoma Belamcandae and Herba Ephedrae on pharmacokinetics of isoflavonoids from Rhizoma Belamcandae in rats. Chinese Trad Pat Med 34:2094–2099

    CAS  Google Scholar 

  • Yang R, Liu H, Bai C et al (2020) Chemical composition and pharmacological mechanism of Qingfei Paidu decoction and Ma Xing Shi Gan decoction against coronavirus disease 2019 (COVID-19): in silico and experimental study. Pharmacol Res 157:104820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wu Y, Yang X et al (2013) Determination of irisflorentin in Xiao’er Qingfei Zhike tablets by RP-HPLC. Guangdong Yaoxueyuan Xuebao 29:52–54

    CAS  Google Scholar 

  • Zhang G, Wang A, Jiang T et al (2008) Interaction of the irisflorentin with bovine serum albumin: a fluorescence quenching study. J Mol Struct 891:93–97

    Article  CAS  Google Scholar 

  • Zhang W-D, Yang W-J, Wang X-J et al (2011) Simultaneous determination of tectorigenin, irigenin and irisflorentin in rat plasma and urine by UHPLC-MS/MS: application to pharmacokinetics. J Chromatogr B 879:3735–3741

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X, Jiang H et al (2013) Comparative studies of dissolution on six active components of Shegan Qingke tablet. Liaoning Zhongyiyao Daxue Xuebao 15:37–39

    Google Scholar 

  • Zhang Y, Wang T, Di Z et al (2016) Molecular simulation study on mechanism of estrogen-like effect of Isoflavones in Belamcanda chinensis. Liaoning Zhongyi Zazhi 43:1944–1946

    CAS  Google Scholar 

  • Zhang X, Qiao G-X, Zhao G-F et al (2021) Characterization of the metabolites of irisflorentin by using ultra-high performance liquid chromatography combined with quadrupole/orbitrap tandem mass spectrometry. J Pharm Biomed Anal 203:114222

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Tian S, Lu D et al (2021) Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 85:153315

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y-S, Liang J, Huang G-Q et al (2020) Analysis on spectrum-effect relationship of anti-inflammatory effect of Zhideke granules based on chemical pattern recognition. Chin J Exp Tradit Med Formulae 26:164–171

    Google Scholar 

  • Zhou D, Bai Z, Guo T et al (2022) Dietary flavonoids and human top-ranked diseases: the perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol 120:374–386

    Article  CAS  Google Scholar 

  • Zhu JTT, Choi RCY, Chu GKY et al (2007) Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: a comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. J Agric Food Chem 55:2438–2445

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Pu B-Q, Xie G-Y et al (2014) Dynamic changes of flavonoids contents in the different parts of rhizome of Belamcanda chinensis during the thermal drying process. Molecules 19:10440–10454

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-quan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, Y., Guo, Mq. (2023). Irisflorentin: Advances on Resources, Metabolism, and Pharmacological Activities. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics