Skip to main content

Myricitrin: Resources, Bioavailability, Bioactivity, and Potential Applications

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Myricitrin (myricetin-3-O-α-rhamnoside) is a member of flavonols, extracted from the fruits, leaves, and barks of numerous plants. It is a secondary metabolite of plants and synthesized from phenylalanine by the phenylpropanoid pathway as other phenolic compounds. Myricitrin exerts various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models and thus myricitrin exhibits great potential as crucial pharmacological agents. Disclosure of the action mechanisms of myricitrin provides insights into its application. Currently, myricitrin has been considered as safe. This review focused on the physiological effects of myricitrin and provides a theoretical basis for its application in functional foods, medicines, and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2018) Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev:2018

    Google Scholar 

  • Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2021) Hyperglycemia-induced oxidative stress in isolated proximal tubules of mouse: the in vitro effects of myricitrin and its solid lipid nanoparticle. Arch Physiol Biochem 127(5):422–428

    Article  CAS  PubMed  Google Scholar 

  • Aldridge S (2012) Toll-like receptor blocker slows beta cell death in type 1 diabetes. Nat Biotechnol 30(2):124–124

    Article  CAS  PubMed  Google Scholar 

  • Araujo NMP, Arruda HS, dos Santos FN, de Morais DR, Pereira GA, Pastore GM (2020) LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res Int:137

    Google Scholar 

  • Armstrong CG, Kim KJ, Pham LML, Park E, Zhong Z, Huang G, Wu JC, Elmer SP, Visuthikraisee V, Cadag EMG, Freeman TB, Lum PY (2017) Pharmaceutical compositions and methods for countering chemotherapy induced cardiotoxicity. Stem cell theranostics, Inc, Capella Biosciences, Inc, Palo Alto

    Google Scholar 

  • Asano N, Kuno T, Hirose Y, Yamada Y, Yoshida K, Tomita H, Nakamura Y, Mori H (2007) Preventive effects of a flavonoid myricitrin on the formation of azoxymethane-induced premalignant lesions in colons of rats. Asian Pac J Cancer Prev 8(1):73–76

    PubMed  Google Scholar 

  • Aura AM, O’Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimia R, Nuutila AM, Oksman-Caldentey KM, Poutanen K (2002) Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem 50(6):1725–1730

    Article  CAS  PubMed  Google Scholar 

  • Aziz AA, Edwards CA, Lean MEJ, Crozier A (1998) Absorption and excretion of conjugated flavonols, including quercetin-4′-O-beta-glucoside and isorhamnetin-4′-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res 29(3):257–269

    Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236(4):1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Ben Kaab S, Jijakli H, Ksouri R, Parisi O, Dal Maso S (2020) Herbicidal composition comprising at least one phenolic active compound. United States: UniversitÉ De LiÉgÈ, FacultÉ Des Sciences MathÉmatiques, Physiques Et Naturelles De Tunis, Biotechnology Center At The Technopole Of Borj-Cedria (CBBC)

    Google Scholar 

  • Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78(1):69–86

    Article  PubMed  Google Scholar 

  • Bhattacharjee N, Dua TK, Khanra R, Joardar S, Nandy A, Saha A, De Feo V, Dewanjee S (2017) Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front Pharmacol 8

    Google Scholar 

  • Calassara LL, Pinto SC, Condack CPM, Leite BF, Nery L, Tinoco LW, Aguiar FA, Leal ICR, Martins SM, da Silva LL, Raimundo JM, Muzitano MF (2021) Isolation and characterization of flavonoids from Tapirira guianensis leaves with vasodilatory and myeloperoxidase-inhibitory activities. Nat Prod Res 35(23):5480–5483

    Article  CAS  PubMed  Google Scholar 

  • Cao MY, Wu J, Wu L, Gu Z, Xie CQ, Wu LY, Hu JW, Xu GZ (2021) Separation of three flavonoid glycosides from Polygonum multiflorum Thunb. Leaves using HSCCC and their antioxidant activities. Eur Food Res Technol 248:129–139

    Google Scholar 

  • Chang CH, Lin GY, Kenneth RD, Wa CY (2005) Myricitrin compounds for sleeping disorders. In: Bright Future Pharmaceutial LA, Chan Hsiaochang, Gou Yulin, Rowlands Dewi Kenneth, Chung Yiuwa

    Google Scholar 

  • Chawla D, Bansal S, Banerjee BD, Madhu SV, Kalra OP, Tripathi AK (2014) Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc Res 95:1–6

    Article  CAS  PubMed  Google Scholar 

  • Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sun P, Date A, Yuyama E, Bissett DL (2006a) Skin care composition. Cincinnati

    Google Scholar 

  • Chen M, Sun P, Date A, Yuyama E, Bissett DL (2006b) Substrate based skin care device. Cincinnati

    Google Scholar 

  • Chen L, Cao H, Huang Q, Xiao J, Teng H (2021) Absorption, metabolism and bioavailability of flavonoids: a review. Crit Rev Food Sci Nutr

    Google Scholar 

  • Chi DS, Qui M, Krishnaswamy G, Li CF, Stone W (2003) Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide-Biol Ch 8(2):127–132

    Article  CAS  Google Scholar 

  • Cho BO, Shin JY, Kim JS, Che DN, Kang HJ, Kang HJ, Oh H, Kim YS, Jang SI (2020) Enzyme-treated date plum leave extract ameliorates atopic dermatitis-like skin lesion in hairless mice. Asian Pac J Trop Biomed 10(6):239–247

    Article  CAS  Google Scholar 

  • Dandoti S (2021) Mechanisms adopted by cancer cells to escape apoptosis-A review. Biocell 45(4):863–884

    Article  CAS  Google Scholar 

  • Daskalaki A, Grafakou ME, Barda C, Kypriotakis Z, Heilmann J, Skaltsa H (2021) Secondary metabolites from Hypericum trichocaulon Boiss. & Heldr., growing wild in the Island of Crete. Biochem Syst Ecol 97

    Google Scholar 

  • Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MRA, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468(2–3):166–170

    Article  CAS  PubMed  Google Scholar 

  • Del Rio D, Borges G, Crozier A (2010) Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr 104:S67–S90

    Article  PubMed  Google Scholar 

  • Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, Huang HF (2015) The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl 17(6):948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domitrovic R, Rashed K, Cvijanovic O, Vladimir-Knezevic S, Skoda M, Visnic A (2015) Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 230:21–29

    Article  CAS  PubMed  Google Scholar 

  • Donadon M, Molinari AF, Corazzi F, Rocchi L, Zito P, Cimino M, Costa G, Raimondi F, Torzilli G (2016) Pharmacological modulation of ischemic-reperfusion injury during Pringle maneuver in hepatic surgery. A prospective randomized pilot study. World J Surg 40(9):2202–2212

    Article  PubMed  Google Scholar 

  • Du L-Y, Zhao M, Xu J, Qian D-W, Jiang S, Shang E-X, Guo J-M, Liu P, Su S-L, Duan J-A, Leng X-J (2014) Identification of the metabolites of myricitrin produced by human intestinal bacteria in vitro using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Expert Opin Drug Metab Toxicol 10(7):921–931

    Article  CAS  PubMed  Google Scholar 

  • Dua TK, Joardar S, Chakraborty P, Bhowmick S, Saha A, De Feo V, Dewanjee S (2021) Myricitrin, a glycosyloxyflavone in Myrica esculenta bark ameliorates diabetic nephropathy via improving glycemic status, reducing oxidative stress, and suppressing inflammation. Molecules 26(2)

    Google Scholar 

  • Emura K, Oka H, Tanaka H (2012) Readily water-soluble myricitrin composition. San-Ei Gen F.F.I., Inc., Alexandria

    Google Scholar 

  • Farooq MO, Bataller R (2016) Pathogenesis and management of alcoholic liver disease. Dig Dis 34(4):347–355

    Article  PubMed  Google Scholar 

  • Fernandez SP, Nguyen M, Yow TT, Chu C, Johnston GAR, Hanrahan JR, Chebib M (2009) The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochem Res 34(10):1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Gonzalez G, Perez-Plasencia C (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett 13(6):3982–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino Gomez S, Cifuentes Barreto M, Hernandez Montaño JF, Santander Gonzales SP, Urueña PCP, Castañeda Uvajoa DM (2012) Bioactive fraction of Petiveria alliacea, pharmaceutical composition containing same, and combination with immunostimulants for treating cancer. Pontificia Universidsd Javeriana, Minneapolis

    Google Scholar 

  • Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L (2013) Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 14(10):19651–19669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Chen S, Qiu ZK, Fang LP, Zhang LS, Guo C, Chen T, Qiu LX (2018) Myricitrin ameliorates ethanol-induced steatosis in mouse AML12 liver cells by activating AMPK, and reducing oxidative stress and expression of inflammatory cytokines. Mol Med Rep 17(5):7381–7387

    CAS  PubMed  Google Scholar 

  • Gao J, Liu CC, Zhang HP, Sun Z, Wang RM (2019) Myricitrin exhibits anti-atherosclerotic and anti-hyperlipidemic effects in diet-induced hypercholesterolemic rats. AMB Express 9(1)

    Google Scholar 

  • Gao Y, Ya BL, Li XJ, Guo Y, Yin HY (2021) Myricitrin ameliorates cognitive deficits in MCAO cerebral stroke rats via histone acetylation-induced alterations of brain-derived neurotrophic factor. Mol Cell Biochem 476(2):609–617

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Martinez H, Gil-Munoz F, Bermejo A, Zuriaga E, Badenes ML (2021) Insights of phenolic pathway in fruits: transcriptional and metabolic profiling in apricot (Prunus armeniaca). Int J Mol Sci 22(7)

    Google Scholar 

  • Gong J, Luo S, Zhao S, Yin S, Li X, Mou T (2019) Myricitrin attenuates memory impairment in a rat model of sepsis-associated encephalopathy via the NLRP3/Bax/Bcl pathway. Folia Neuropathol 57(4):327–334

    Article  PubMed  Google Scholar 

  • Gonzales GB (2017) In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: questions, considerations and future perspectives. Proc Nutr Soc 76(3):175–181

    Article  CAS  PubMed  Google Scholar 

  • Griffiths LA, Smith GE (1972) Metabolism of myricetin and related compounds in rat metabolite formation in vivo and by intestinal microflora in vitro. Biochem J 130(1):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson JE, Antonacci C (2013) Natural sunscreen composition. Hanson James E, Antonacci Cosimo, Summit

    Google Scholar 

  • Hanson JE, Antonacci C (2015) Natural sunscreen composition. Hanson James E, Antonacci Cosimo, Summit

    Google Scholar 

  • Hao GP, Du XH, Zhao FX, Shi RJ, Wang JM (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Org Cult 97(2):175–185

    Article  CAS  Google Scholar 

  • He N, Wang PY, Niu YY, Chen JQ, Li CQ, Kang WY (2019) Evaluation antithrombotic activity and action mechanism of myricitrin. Ind Crop Prod 129:536–541

    Article  CAS  Google Scholar 

  • Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Koyanagi M, Hayashi S (2015) Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food Chem Toxicol 83:283–292

    Article  CAS  PubMed  Google Scholar 

  • Hollman PCH (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 42:74–83

    Article  CAS  Google Scholar 

  • Hong JT, Kim HC, Kim HS, Lee YM, Oh KW (2005) The role of nitric oxide on glutaminergic modulation of dopaminergic activation. Pharmacol Res 52(4):298–301

    Article  CAS  PubMed  Google Scholar 

  • Hsu LW, Chang SC, Shen CH, Liao YX, Chuang KS (2006) Flavone derivatives as TNFalpha inhibitors or antagonists. Advanced Gene Technology, Corp, Sugar Land

    Google Scholar 

  • Hu ZP, Zhao G, Gou W, Cheng H (2020) Myricitrin inhibits vascular endothelial growth factor-induced angiogenesis of human umbilical vein endothelial cells and mice. Biomed Pharmacother 130

    Google Scholar 

  • JECFA (2014) Evaluation of certain veterinary drug residues in food Seventy-eighth report of the Joint FAO/WHO Expert Committee on Food Additives Introduction. In: Evaluation of certain veterinary drug residues in food (vol 988, pp. 1)

    Google Scholar 

  • Jo S, Kim S, Shin DH, Kim MS (2020) Inhibition of African swine fever virus protease by myricetin and myricitrin. J Enzyme Inhib Med Chem 35(1):1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keikhaei F, Mirshekar MA, Shahraki MR, Dashipour A (2020) Antiepileptogenic effect of myricitrin on spatial memory and learning in a kainate-induced model of temporal lobe epilepsy. Learn Motiv 69

    Google Scholar 

  • Khanra R, Bhattacharjee N, Dua TK, Nandy A, Saha A, Kalita J, Manna P, Dewanjee S (2017) Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomed Pharmacother 94:726–741

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Chuang DM (2014) HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am J Transl Res 6(3):206–223

    PubMed  PubMed Central  Google Scholar 

  • Kim HD, Jeong KH, Jung UJ, Kim SR (2016) Myricitrin ameliorates 6-hydroxydopamine-induced dopaminergic neuronal loss in the substantia nigra of mouse brain. J Med Food 19(4):374–382

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Kim SR, Jung UJ (2020) Myricitrin ameliorates hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet/streptozotocin-induced diabetic mice. Int J Mol Sci 21(5)

    Google Scholar 

  • Koike S, Shirahata N, Okisaka K (2011) Miso. Kao Corporation, Alexandria

    Google Scholar 

  • Ku YS, Ng MS, Cheng SS, Lo AWY, Xiao ZX, Shin TS, Chung G, Lam HM (2020) Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 12(6)

    Google Scholar 

  • Kurkin VA, Zimenkina NI (2021) HPLC determination of myricitrin in Juglans nigra L. bark. Pharm Chem J

    Google Scholar 

  • Lei Y (2017) Myricitrin decreases traumatic injury of the spinal cord and exhibits antioxidant and anti-inflammatory activities in a rat model via inhibition of COX-2, TGF-beta 1, p53 and elevation of Bcl-2/Bax signaling pathway. Mol Med Rep 16(5):7699–7705

    Article  CAS  PubMed  Google Scholar 

  • Li RQ, Hu LB, Hu C, Wang QL, Lei YH, Zhao B (2020) Myricitrin protects against cisplatin-induced kidney injury by eliminating excessive reactive oxygen species. Int Urol Nephrol 52(1):187–196

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Yu HN, Gao S, Wu YF, Cheng AX, Lou HX (2017) The isolation and functional characterization of three liverwort genes encoding cinnamate 4-hydroxylase. Plant Physiol Biochem 117:42–50

    Article  CAS  PubMed  Google Scholar 

  • Long J, Guan P, Hu X, Yang LY, He LQ, Lin QL, Luo FJ, Li JZ, He XG, Du ZL, Li TJ (2021) Natural polyphenols as targeted modulators in colon cancer: molecular mechanisms and applications. Front Immunol:12

    Google Scholar 

  • Lopez-Lazaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res-Genet Toxicol Environ Mutagen 696(1):41–47

    Article  CAS  Google Scholar 

  • Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12(4):231–242

    Article  PubMed  Google Scholar 

  • Luo XD, Basile MJ, Kennelly EJ (2002) Polyphenolic antioxidants from the fruits of Chrysophyllum cainito L. (star apple). J Agric Food Chem 50(6):1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Lv HM, An BY, Yu QL, Cao Y, Liu Y, Li SZ (2020) The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. Int J Biol Macromol 155:1092–1104

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Zhou R, Tong R, Shi S, Chen X (2017) At-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata). J Chromatogr B 1040:112–117

    Article  CAS  Google Scholar 

  • Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N (2021) Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygium antisepticum leaves. Molecules 26(11)

    Google Scholar 

  • Maronpot RR, Koyanagi M, Davis J, Recio L, Marbury D, Boyle M, Hayashi SM (2015) Safety assessment and single-dose toxicokinetics of the flavouring agent myricitrin in Sprague-Dawley rats. Food Addit 32(11):1799–1809

    Article  CAS  Google Scholar 

  • Matsukawa N, Matsumoto M, Hara H (2012) Nondigestible saccharide enhances transcellular transport of myricetin glycosides in the small intestine of rats: a newly defined mechanism of flavonoid absorption. In: Dietary fiber and health, pp 487–496

    Google Scholar 

  • Meeran SM, Katiyar SK (2008) Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 13:2191–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer E, Mori MA, Campos AC, Andreatini R, Guimaraes FS, Milani H, de Oliveira RMW (2017) Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice. Behav Brain Res 316:59–65

    Article  CAS  PubMed  Google Scholar 

  • Michel MCP, Guimarães AG, Paula CA, Rezende SA, Sobral MEG, Saúde Guimarães DA (2013) Extracts from the leaves of Campomanesia velutina inhibits production of LPS/INF-γ induced inflammatory mediators in J774A.1 cells and exerts anti-inflammatory and antinociceptive effects in vivo. Rev Bras Farmacogn 23(6):927–936

    Article  Google Scholar 

  • Moriwaki M, Kumoi K, Ozeki M (2020) Method for producing flavonoid inclusion compound. Taiyo Kagaku Co., Ltd., Falls Church

    Google Scholar 

  • Motlhatlego KE, Abdalla MA, Leonard CM, Eloff JN, McGaw LJ (2020) Inhibitory effect of Newtonia extracts and myricetin-3-o-rhamnoside (myricitrin) on bacterial biofilm formation. BMC Complement Med Ther 20(1)

    Google Scholar 

  • Motlhatlego KE, Mehrbod P, Fotouhi F, Abdalla MA, Eloff JN, McGaw LJ (2021) Anti-influenza A virus activity of two Newtonia species and the isolated compound myricetin-3-o-rhamnoside. BMC Complement Med Ther 21(1)

    Google Scholar 

  • Na MK, Yoo J-K, Lee CB, Kim JP, Lim GH, Min DI, Jeon YM (2010) Extract of Cercis chinensis having anti-oxidant activity and anti-aging activity, and cosmetical composition containing the extract for anti-oxidation, skin-aging protection and wrinkle improvement. Hankook Pharm. Co., Inc, Hansaeng Cosmetic Co., Ltd., New York

    Google Scholar 

  • Nugroho A, Heryani H, Istikowati WT (2019) Quantitative determination of quercitrin and myricitrin in three different parts of Euphorbia hirta as bioflavonoid source for functional food. In: 1st International Conference on Food and Bio-Industry (ICFB), vol 443. Univ Padjadjaran, Bandung

    Google Scholar 

  • Ong KC, Khoo HE (1997) Biological effects of myricetin. Gen Pharmacol 29(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Oroojan AA, Ahangarpour A, Paknejad B, Zareian P, Hami Z, Abtahi SR (2021) Effects of myricitrin and solid lipid nanoparticle-containing myricitrin on reproductive system disorders induced by diabetes in male mouse. World J Mens Health 39(1):147–157

    Article  PubMed  Google Scholar 

  • Park J, Lee B, Choi H, Kim W, Kim HJ, Cheong H (2016) Antithrombosis activity of protocatechuic and shikimic acids from functional plant Pinus densiflora Sieb. et Zucc needles. J Nat Med 70(3):492–501

    Article  CAS  PubMed  Google Scholar 

  • Parvaneh T, Abedi B, Davarynejad GH, Moghadam EG (2019) Enzyme activity, phenolic and flavonoid compounds in leaves of Iranian red flesh apple cultivars grown on different rootstocks. Sci Hortic 246:862–870

    Article  CAS  Google Scholar 

  • Peixoto Araujo NM, Silva EK, Arruda HS, Rodrigues de Morais D, Meireles AA, Pereira GA, Pastore GM (2021) Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: a comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Sep Purif Technol 272:118920

    Article  CAS  Google Scholar 

  • Perdomo RT, Defende CP, Mirowski PD, Freire TV, Weber SS, Garcez WS, Guterres ZD, Matos MDC, Garcez FR (2021) Myricitrin from Combretum lanceolatum exhibits inhibitory effect on DNA-topoisomerase type II alpha and protective effect against in Vivo doxorubicin-induced mutagenicity. J Med Food 24(3):273–281

    Article  CAS  PubMed  Google Scholar 

  • Pereira M, Siba IP, Chioca LR, Correia D, Vital M, Pizzolatti MG, Santos ARS, Andreatini R (2011) Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1636–1644

    Article  CAS  Google Scholar 

  • Prasniewski A, da Silva C, Ayres BRB, da Silva EA, Pilau EJ, Nani BD, Rosalen PL, Oldoni TLC (2021) Characterization of phenolic compounds by UHPLC-QTOF-MS/MS and functional properties of Syzygium malaccense leaves. S Afr J Bot 139:418–426

    Article  CAS  Google Scholar 

  • Pretlow TP, Oriordan MA, Pretlow TG, Stellato TA (1992) Aberrant crypts in human colonic mucosa – putative preneoplastic lesions. J Cell Biochem:55–62

    Google Scholar 

  • Pretlow TP, Cheyer C, Oriordan MA (1994) Aberrant crypt foci and colon tumors in f344 rats have similar increases in proliferative activity. Int J Cancer 56(4):599–602

    Article  CAS  PubMed  Google Scholar 

  • Qi S, Feng Z, Li Q, Qi Z, Zhang Y (2017) Myricitrin modulates NADPH oxidase-dependent ROS production to inhibit endotoxin-mediated inflammation by blocking the JAK/STAT1 and NOX2/p47(phox) pathways. Oxid Med Cell Longev:2017

    Google Scholar 

  • Qin M, Luo Y, Meng XB, Wang M, Wang HW, Song SY, Ye JX, Pan RL, Yao F, Wu P, Sun GB, Sun XB (2015) Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: an insight into PI3K/Akt activation and STAT3 signaling pathways. Vasc Pharmacol 70:23–34

    Article  CAS  Google Scholar 

  • Roy G (2012) Beverage composition and method of reducing degradation of monatin. PepsiCo, Inc., Washington

    Google Scholar 

  • Roy G, Gawkowski D, Talebi F, Boles K-A, Brand-levine D (2013) Fading protection of colors derived from natural sources used in beverage products. Tropicana Products, Inc., Washington

    Google Scholar 

  • Rukavina I, Rodrigues MJ, Pereira CG, Mansinhos I, Romano A, Ślusarczyk S, Matkowski A, Custódio L (2021) Greener is better: first approach for the use of natural deep eutectic solvents (NADES) to extract antioxidants from the medicinal halophyte Polygonum maritimum L. Molecules 26(20):6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha R, Pratheeba T, Ragavendran C, Natarajan D (2019) Pouteria campechiana leaf extract and its bioactive compound myricitrin are mosquitocidal against Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Med 12(7):321–328

    Article  CAS  Google Scholar 

  • Saraiva M, Vieira P, O’Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217(1)

    Google Scholar 

  • Sarkar MK, Mahapatra SK, Vadivel V (2020) Oxidative stress mediated cytotoxicity in leukemia cells induced by active phyto-constituents isolated from traditional herbal drugs of West Bengal. J Ethnopharmacol 251

    Google Scholar 

  • Sarkar MK, Kar A, Jayaraman A, Shanmugam K, Vadivel V, Mahapatra SK (2021) Apoptotic mechanisms of myricitrin isolated from Madhuca longifolia leaves in HL-60 leukemia cells. Mol Biol Rep 48(6):5327–5334

    Article  CAS  PubMed  Google Scholar 

  • Schaart JG, Dubos C, De La Fuente IR, van Houwelingen A, de Vos RCH, Jonker HH, Xu WJ, Routaboul JM, Lepiniec L, Bovy AG (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria x ananassa) fruits. New Phytol 197(2):454–467

    Article  CAS  PubMed  Google Scholar 

  • Shen YT, Shen XR, Cheng Y, Liu YL (2020) Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury. Int Immunopharmacol 89

    Google Scholar 

  • Shimosaki S, Tsurunaga Y, Itamura H, Nakamura M (2011) Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts in vitro and in vivo. Nat Prod Res 25(4):374–380

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Agarwal R (2006) Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr Drug Targets 7(3):345–354

    Article  CAS  PubMed  Google Scholar 

  • Smith GE, Griffiths LA (1970) Metabolism of myricetin, myricitrin and 3,4,5-trihydroxyphenylacetic acid. Biochem J 118(3):P53-+

    Article  Google Scholar 

  • Sobolewski C, Legrand N, Morceau F, Diederich M (2010) Inflammation: novel arrows for an ancient target. Biochem Pharmacol 80(12):1769–1770

    Article  CAS  PubMed  Google Scholar 

  • Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garcia JL (2002) Effects of(−)-nicotine and(−)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol 64(1):125–135

    Article  CAS  PubMed  Google Scholar 

  • Soto-Otero R, Méndez-Álvarez E, Sánchez-Iglesias S, Zubkov FI, Voskressensky LG, Varlamov AV, de Candia M, Altomare C (2008) Inhibition of 6-hydroxydopamine-induced oxidative damage by 4, 5-dihydro-3H-2-benzazepine N-oxides. Biochem Pharmacol 75(7):1526–1537

    Article  CAS  PubMed  Google Scholar 

  • Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, Boon ACM, Lenschow DJ, Stappenbeck TS (2017) The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357(6350):498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storkey C, Pattison DI, Koehler JA, Gaspard DS, Evans JC, Hagestuen ED, Davies MJ (2015) Prevention of degradation of the natural high potency sweetener (2R,4R)-monatin in mock beverage solutions. Food Chem 173:645–651

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Xue JB, Zhou YL, Wang XF (2020) Myricitrin regulates proliferation, apoptosis and inflammation of chondrocytes treated with IL-1 beta. Cell Mol Biol 66(1):65–69

    Article  PubMed  Google Scholar 

  • Tan BL, Norhaizan ME (2021) Oxidative stress, diet and prostate cancer. World J Mens Health 39(2):195–207

    Article  PubMed  Google Scholar 

  • Tenfen A, Mariano LNB, Boeing T, Cechinel-Zanchett CC, da Silva LM, de Andrade SF, de Souza P, Cechinel V (2019) Effects of myricetin-3-O-alpha-rhamnoside (myricitrin) treatment on urinary parameters of Wistar rats. J Pharm Pharmacol 71(12):1832–1838

    Article  CAS  PubMed  Google Scholar 

  • Trinh Q, Le L (2014) An investigation of antidiabetic activities of bioactive compounds in Euphorbia hirta Linn using molecular docking and pharmacophore. Med Chem Res 23(4):2033–2045

    Article  CAS  Google Scholar 

  • Tsuchiya ST, Seo, Yoko (Tokyo, JP), Kohori, Jun (Tokyo, JP), Ochiai, Ryuji (Haga-gun, JP), Suzuki, Atsushi (Haga-gun, JP) (2011) Liquid seasoning. Kao Corporation (Tokyo, JP), Alexandria

    Google Scholar 

  • Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakihira K, Kikumoto S, Kigawa H, Nozaki O, Minami M (1981) Process for preparing anthocyans from corresponding flavonoid glycosides. Shiraimatsu Shinyaku Company, Ltd., Washington

    Google Scholar 

  • Wang Y-H, Xuan Z-H, Tian S, He G-R, Du G-H (2013) Myricitrin attenuates 6-hydroxydopamine-induced mitochondrial damage and apoptosis in PC12 cells via inhibition of mitochondrial oxidation. J Funct Foods 5(1):337–345

    Article  CAS  Google Scholar 

  • Wang W, Shen H, Xie JJ, Ling J, Lu H (2015) Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med 8(3):3514–3521

    PubMed  PubMed Central  Google Scholar 

  • Wang JM, Lian PL, Yu Q, Wei JF, Kang WY (2017a) Antithrombotic mechanism of polysaccharides in Blackberry (Rubus spp.) seeds. Food Nutr Res 61

    Google Scholar 

  • Wang M, Sun GB, Du YY, Tian Y, Liao P, Liu XS, Ye JX, Sun XB (2017b) Myricitrin protects cardiomyocytes from hypoxia/reoxygenation injury: involvement of heat shock protein 90. Front Pharmacol 8

    Google Scholar 

  • Wannapinpong S, Srikulnath K, Thongpan A, Choowongkomon K, Peyachoknagul S (2015) Molecular cloning and characterization of the CHS gene family in turmeric (Curcuma longa Linn.). J Plant Biochem Biotechnol 24(1):25–33

    Article  CAS  Google Scholar 

  • Wu JH, Huang CY, Tung YT, Chang ST (2008) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J Agric Food Chem 56(2):328–332

    Article  CAS  PubMed  Google Scholar 

  • Xiang D, Wang CG, Wang WQ, Shi CY, Xiong W, Wang MD, Fang JG (2017) Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: an in vitro investigation. Int J Food Sci Nutr 68(6):704–711

    Article  CAS  PubMed  Google Scholar 

  • Xie PY, Cui LL, Shan Y, Kang WY (2017) Antithrombotic effect and mechanism of Radix Paeoniae Rubra. Biomed Res Int:2017

    Google Scholar 

  • Xu RR, Zhang Y, Ye XQ, Xue S, Shi J, Pan JH, Chen QP (2013) Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem 138(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Xu ZM, Chu XK, Jiang HB, Schilling H, Chen SD, Feng J (2017) Induced dopaminergic neurons: a new promise for Parkinson’s disease. Redox Biol 11:606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Yoshimi N, Hirose Y, Kawabata K, Matsunaga K, Shimizu M, Hara A, Mori H (2000) Frequent beta-catenin gene mutations and accumulations of the protein in the putative preneoplastic lesions lacking macroscopic aberrant crypt foci appearance, in rat colon carcinogenesis. Cancer Res 60(13):3323–3327

    CAS  PubMed  Google Scholar 

  • Yamada Y, Yoshimi N, Hirose Y, Matsunaga K, Katayama M, Sakata K, Shimizu M, Kuno T, Mori H (2001) Sequential analysis of morphological and biological properties of beta-catenin-accumulated crypts, provable premalignant lesions independent of aberrant crypt foci in rat colon carcinogenesis. Cancer Res 61(5):1874–1878

    CAS  PubMed  Google Scholar 

  • Yan ZJ, Lin Z, Wu YF, Zhan JD, Qi WH, Lin J, Shen JQ, Xue XH, Pan XY (2020) The protective effect of myricitrin in osteoarthritis: an in vitro and in vivo study. Int Immunopharmacol:84

    Google Scholar 

  • Yang Y-L, Liu M, Cheng X, Li W-H, Zhang S-S, Wang Y-H, Du G-H (2019) Myricitrin blocks activation of NF-kappa B and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J Neuroimmunol 337

    Google Scholar 

  • Yildiz A, Guleryuz S, Ankerst DP, Ongur D, Renshaw PF (2008) Protein kinase C inhibition in the treatment of mania. Arch Gen Psychiatry 65(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y (2019) The research progress of chalcone isomerase (CHI) in plants. Mol Biotechnol 61(1):32–52

    Article  CAS  PubMed  Google Scholar 

  • Yokomizo A, Moriwaki M (2005) Transepithelial permeability of myricitrin and its degradation by simulated digestion in human intestinal Caco-2 cell monolayer. Biosci Biotech Bioch 69(9):1774–1776

    Article  CAS  Google Scholar 

  • You K, Gu H, Yuan ZW, Xu XW (2021) Tumor necrosis factor alpha signaling and organogenesis. Front Cell Dev Biol 9

    Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ, Quiroz J, Jolkovsky L, Luckenbaugh DA, Manji HK (2007) Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study. Bipolar Disord 9(6):561–570

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen YP, Shen Q, Liu GY, Ye JX, Sun GB, Sun XB (2016) Myricitrin attenuates high glucose-induced apoptosis through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes. Molecules 21(7)

    Google Scholar 

  • Zhang B, Shen Q, Chen YP, Pan RL, Kuang SH, Liu GY, Sun GB, Sun XB (2017) Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep 7

    Google Scholar 

  • Zhang Y, Chen SG, Wei CY, Rankin GO, Ye XQ, Chen YC (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WJ, Torres-Rojas C, Yue JM, Zhu BM (2021a) Adipose-derived stem cells in ovarian cancer progression, metastasis, and chemoresistance. Exp Biol Med 246(16):1810–1815

    Article  CAS  Google Scholar 

  • Zhang XY, Liu YH, Liu DZ, Xu JY, Zhang Q (2021b) Insulin-mimic components in Acer truncatum leaves: bio-guided isolation, annual variance profiling and regulating pathway investigated by omics. Pharmaceuticals 14(7)

    Google Scholar 

  • Zhao MR, Li J, Zhu L, Chang P, Li LL, Zhang LY (2019) Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes 10(7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfu Ji or Lingjun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geng, Y. et al. (2023). Myricitrin: Resources, Bioavailability, Bioactivity, and Potential Applications. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics