Skip to main content

Postharvest Handling Systems

Encyclopedia of Smart Agriculture Technologies

Definition

Postharvest handling system includes all operations from harvesting the crop in the field to delivering the final product to the consumer. It comprises cooling, cleaning, sorting, grading, and preliminary packing in the field to the use of the most advanced infrastructure, transport, and storage of food commodities.

Introduction

The word “postharvest” refers to the agricultural produce supply chain that exists between harvest and consumption. A postharvest chain is, thus, an organized grouping of individuals, infrastructure, technologies, and procedures that are involved during handling and transportation of harvested commodities to the end consumers. Postharvest handling includes in-field-cooling, cleaning, grading, transportation, storage, packaging, and distribution. Deterioration in the agricultural produce starts immediately after harvesting due to various biological factors such as respiration rate, ethylene production, water losses, rooting, sprouting, pathogens, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aba IP, Gana YM, Ogbonnaya C, Morenikeji O (2012) Simulated transport damage study on fresh tomato (Lycopersicon esculentum) fruits. Agric Eng Int CIGR J 14:119–126

    Google Scholar 

  • Alamar MC, Collings E, Cools K, Terry LA (2017) Impact of controlled atmosphere scheduling on strawberry and imported avocado fruit. Postharvest Biol Technol 134:76–86

    Article  CAS  Google Scholar 

  • Barrett DM, Somogyi L, Ramaswamy HS (2004) Processing fruits: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Belforte G, Deboli R, Gay P, Piccarolo P, Aimonino DR (2006) Robot design and testing for greenhouse applications. Biosyst Eng 95(3):309–321

    Article  Google Scholar 

  • Bessemans N, Verboven P, Verlinden BE, Nicolaï BM (2016) A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA). Postharvest Biol Technol 115:91–102

    Article  CAS  Google Scholar 

  • Beuchat LR (2006) Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases. Br Food J 108:38–53

    Google Scholar 

  • Birrell S, Hughes J, Cai JY, Iida F (2020) A field-tested robotic harvesting system for iceberg lettuce. J Field Robot 37(2):225–245

    Article  PubMed  Google Scholar 

  • Cappellini RA, Ceponis MJ (1984) Postharvest losses in fresh fruits and vegetables. Postharvest pathology of fruits and vegetables: postharvest losses in perishable crops, pp 24–30

    Google Scholar 

  • Crisosto C, Valero D (2008) 22 harvesting and postharvest handling of peaches for the fresh market. In: The peach: botany, production and uses, vol 575. CAB International, Wallingford, p 596

    Google Scholar 

  • del Carmen Villalobos M, Serradilla MJ, Martín A, Hernández-León A, Ruíz-Moyano S, de Guía Córdoba M (2017) Characterization of microbial population of breba and main crops (Ficus carica) during cold storage: influence of passive modified atmospheres (MAP) and antimicrobial extract application. Food Microbiol 63:35–46

    Article  Google Scholar 

  • Edan Y, Rogozin D, Flash T, Miles GE (2000) Robotic melon harvesting. IEEE Trans Robot Autom 16(6):831–835

    Article  Google Scholar 

  • Feng Q, Zou W, Fan P, Zhang C, Wang X (2018) Design and test of robotic harvesting system for cherry tomato. Int J Agric Biol Eng 11(1):96–100

    Google Scholar 

  • Fu H, He L, Ma S, Karkee M, Chen D, Zhang Q, Wang S (2017) ‘Jazz’apple impact bruise responses to different cushioning materials. Trans ASABE 60(2):327–336

    Article  CAS  Google Scholar 

  • Galeas P, Muñoz C, Huircan J, Fernandez M, Segura-Ponce LA, Duran-Faundez C (2019) Smartbins: using intelligent harvest baskets to estimate the stages of berry harvesting. Sensors 19(6):1361

    Article  PubMed Central  Google Scholar 

  • García MA, Gutiérrez S, López HC, Rivera S, Ruiz AC (2007) Estado del arte de la tecnología de robots aplicada a invernaderos. Avances en Investigación Agropecuaria 11(3):53–61

    Google Scholar 

  • Giné Bordonaba J, Terry LA (2009) Development of a glucose biosensor for rapid assessment of strawberry quality: relationship between biosensor response and fruit composition. J Agric Food Chem 57(18):8220–8226

    Article  PubMed  Google Scholar 

  • Guevara L, Rocha RP, Cheein FA (2021) Improving the manual harvesting operation efficiency by coordinating a fleet of N-trailer vehicles. Comput Electron Agric 185:106103

    Article  Google Scholar 

  • Hale MG, Orcutt DM, Thompson LK (1987) The physiology of plants under stress, John Wiley & Sons

    Google Scholar 

  • Hansen M (2004) Mechanizing U.S. tree fruit production. Good Fruit Grower 55(7):24–25

    Google Scholar 

  • He L, Fu H, Sun D, Karkee M, Zhang Q (2017) Shake-and-catch harvesting for fresh market apples in trellis-trained trees. Trans ASABE 60(2):353–360

    Article  Google Scholar 

  • Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and developing countries: opportunities to improve resource use. J Agric Sci 149:37–45

    Article  Google Scholar 

  • Hui KC, Vigneault C, Sotocinal SA, de Castro LR, Raghavan GV (2008) Effects of loading and air bag bracing patterns on correlated relative air distribution inside refrigerated semi-trailers transporting fresh horticultural produce. Can Biosyst Eng 50:27–35

    Google Scholar 

  • Johnson GI, Hofman PJ (2009) Postharvest technology and quarantine treatments, Botany, Production and Uses. CABI International p 529–605

    Google Scholar 

  • Kader, A. A. (2002). Postharvest technology of horticultural crops. University of California. Agriculture and natural resources, Publication, 3311, Oakland University of California, Agricultural and Natural Resources 535

    Google Scholar 

  • Kader AA (2004, June) Increasing food availability by reducing postharvest losses of fresh produce. In V International Postharvest Symposium 682, pp 2169–2176

    Google Scholar 

  • Kitinoja L, Kader AA (2002) Small-scale postharvest handling practices: a manual for horticultural crops, 4th edn. University of California, Davis

    Google Scholar 

  • Kitinoja L, Saran S, Roy SK, Kader AA (2011) Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. J Sci Food Agric 91:597–603

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens & Instrumen Food Qual 5(3):137–146

    Article  Google Scholar 

  • Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  • Lu Y, Lu R, Zhang Z (2021) Development and preliminary evaluation of a new apple harvest assist and in-field sorting machine. Appl Eng Agric 38:23–35

    Google Scholar 

  • Magkos F, Arvaniti F, Zampelas A (2006) Organic food: buying more safety or just peace of mind? A critical review of the literature. Crit Rev Food Sci Nutr 46:23–56

    Article  PubMed  Google Scholar 

  • Maldonado AIL (2010) Automation and robots for handling, storing and transporting fresh horticulture produce. Stewart Postharv Rev 6(3):1–6

    Google Scholar 

  • Nunez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  CAS  PubMed  Google Scholar 

  • Oliveira M, Abadias M, Usall J, Torres R, Teixidó N, Viñas I (2015) Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables–a review. Trends Food Sci Technol 46(1):13–26

    Article  CAS  Google Scholar 

  • Peng C, Vougioukas S, Slaughter D, Fei Z, Arikapudi R (2021) A strawberry harvest-aiding system with crop-transport co-robots: design, development, and field evaluation. arXiv preprint arXiv:2107.13063

    Google Scholar 

  • Peterson DL (2005) Development of a harvest aid for narrow-inclined-trellised tree-fruit canopies. Appl Eng Agric 21(5):803–806

    Article  Google Scholar 

  • Plotto A, Narciso JA (2006) Guidelines and acceptable postharvest practices for organically grown produce. HortScience 41:287–291

    Article  Google Scholar 

  • Shewfelt RL, Prussia SE (2022) Challenges in handling fresh fruits and vegetables. In: Postharvest handling. Academic, Oxford, UK, pp 167–186

    Google Scholar 

  • Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K (2017) Design, integration, and field evaluation of a robotic apple harvester. J Field Robot 34(6):1140–1159

    Article  Google Scholar 

  • Singh SP, Singh Z (2013) Controlled and modified atmospheres influence chilling injury, fruit quality and antioxidative system of J apanese plums (P runus salicina L indell). Int J Food Sci Technol 48(2):363–374

    Article  CAS  Google Scholar 

  • Sparks SA (2013) Postharvest handling systems for fresh fruits and vegetables in sub-Saharan Africa and potential enhancement by the aid for trade initiative. University of Georgia, Athens Georgia

    Google Scholar 

  • Thompson AK (2010) Controlled atmosphere storage of fruits and vegetables. CAB Int 272

    Google Scholar 

  • Valls A, García F, Ramírez M, Benlloch J (2015) Understanding subterranean grain storage heritage in the Mediterranean region: the Valencian silos (Spain). Tunn Undergr Space Technol 50:178–188

    Article  Google Scholar 

  • Van Boxstael S, Habib I, Jacxsens L, De Vocht M, Baert L, Van De Perre E, Rajkovic A, Lopez-Galvez F, Sampers I, Spanoghe P (2013) Food safety issues in fresh produce: bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control 32:190–197

    Article  Google Scholar 

  • Vigneault C, Thompson J, Wu S (2009) Designing container for handling fresh horticultural produce. Postharv Technol Horticult Crops 2(2):25–47

    Google Scholar 

  • Wilson CL (2007) Intelligent and active packaging for fruits and vegetables. CRC Press, Boca Raton

    Google Scholar 

  • Wilson CL (2013) Establishment of a world food preservation center. Agric Food Security 2:1–4

    Article  Google Scholar 

  • Woolf A, Ferguson I (2000) Postharvest responses to high fruit temperatures in the field. Postharvest Biol Technol 21:7–20

    Article  Google Scholar 

  • Xiong Y, Ge Y, Grimstad L, From PJ (2020) An autonomous strawberry-harvesting robot: design, development, integration, and field evaluation. J Field Robot 37(2):202–224

    Article  Google Scholar 

  • Yahia EM (ed) (2009) Modified and controlled atmospheres for the storage, transportation, and packaging of horticultural commodities. CRC Press, Boca Raton

    Google Scholar 

  • Ye Y, Wang Z, Jones D, He L, Taylor ME, Hollinger GA, Zhang Q (2017) Bin-dog: a robotic platform for bin management in orchards. Robotics 6(2):12

    Article  Google Scholar 

  • Zhang Z, Heinemann PH, Liu J, Baugher TA, Schupp JR (2016) The development of mechanical apple harvesting technology: a review. Trans ASABE 59(5):1165 1180

    Google Scholar 

  • Zhou J, He L, Zhang Q, Du X, Chen D, Karkee M (2013) Evaluation of the influence of shaking frequency and duration in mechanical harvesting of sweet cherry. Appl Eng Agric 29(5):607–612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqoob Majeed .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majeed, Y., Waseem, M. (2022). Postharvest Handling Systems. In: Zhang, Q. (eds) Encyclopedia of Smart Agriculture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-89123-7_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89123-7_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89123-7

  • Online ISBN: 978-3-030-89123-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Postharvest Handling Systems
    Published:
    14 April 2023

    DOI: https://doi.org/10.1007/978-3-030-89123-7_125-3

  2. Postharvest Handling Systems
    Published:
    12 November 2022

    DOI: https://doi.org/10.1007/978-3-030-89123-7_125-2

  3. Original

    Postharvest Handling Systems
    Published:
    01 October 2022

    DOI: https://doi.org/10.1007/978-3-030-89123-7_125-1