Skip to main content

Central Nervous System (CNS) Safety Pharmacology Studies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

Safety pharmacology aims ensuring that the use of pharmacological treatments is devoid of unacceptable risk for the health of patients. The central nervous system (CNS) is one of the vital systems which need to be protected against the potential harmful effects of test items. The present chapter includes some guidance for the selection and the realization of preclinical tests used in the context of CNS safety pharmacology. In contrast with a trend for the growing incorporation of safety pharmacology tests within larger toxicology assays, we think that CNS safety pharmacology remains a development step mandatory to ensure the safe use of test items in human patients. We describe the core battery of tests which provides essential and indispensable information on the risk level associated with the use of a test item. If any risk signal is detected by a test belonging to the core battery, we recommend the realization of supplemental safety studies in order to further evaluate the risk level on specific CNS processes. We present supplemental studies in three major safety domains including dependence/abuse, cognitive functions, and electrophysiological CNS activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Accardi MV, Pugsley MK, Forster R, Troncy E, Huang H, Authier S (2016) The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 81:47–59

    Article  CAS  Google Scholar 

  • Anonymous (2000) ICH S7A: safety pharmacology studies for human pharmaceuticals. European Agency for the Evaluation of Medicinal Products. Evaluation of Medicines for Human Use. CPMP/ICH/539/00, London, 16 November 2000

    Google Scholar 

  • Aspen JM, Winger G (1997) Ethanol effects on self-administration of alfentanil, cocaine, and nomifensine in rhesus monkeys. Psychopharmacology 130:222–227

    Article  CAS  Google Scholar 

  • Ator NA, Griffiths RR (1989) Differential generalization to pentobarbital in rats trained to discriminate lorazepam, chlordiazepoxide, diazepam, and triazolam. Psychopharmacology 98:20–30

    Article  CAS  Google Scholar 

  • Authier S, Delatte MS, Kallman MJ, Stevens J, Markgraf C (2016) EEG in non-clinical drug safety assessments: current and emerging considerations. J Pharmacol Toxicol Methods 81:274–285

    Article  CAS  Google Scholar 

  • Baldrick P (2021) Core battery safety pharmacology testing – an assessment of its utility in early drug development. J Pharmacol Toxicol Methods 109:107055

    Article  CAS  Google Scholar 

  • Balster RL (1991) Drug abuse potential evaluation in animals. Br J Addict 86:1549–1558

    Article  CAS  Google Scholar 

  • Bammer C (1982) Pharmacological investigations of neurotransmitter involvement in passive avoidance responding: a review and some new results. Neurosci Biobehav Rev 6:247–296

    Article  CAS  Google Scholar 

  • Bass AS, Cartwright ME, Mahon C, Morrison R, Snyder R, McNamara P, Bradley P, Zhou YY, Hunter J (2009) Exploratory drug safety: a discovery strategy to reduce attrition in development. J Pharmacol Toxicol Methods 60:69–78

    Article  CAS  Google Scholar 

  • Bergman J, Madras BK, Johnson SE, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exper Ther 251:150–155

    CAS  Google Scholar 

  • Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D (2009) Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J Neurosci Methods 178:10–14

    Article  Google Scholar 

  • Boissier JR, Simon P (1965) Action de la cafĂ©ine sur la motilitĂ© spontanĂ©e de la souris. Arch Int Pharmacodyn 158:212–221

    CAS  Google Scholar 

  • Brady JV, Griffiths RR (1976) Behavioral procedures for evaluating the relative abuse potential of CNS drugs in primates. Fed Proc 35:2245–2253

    CAS  Google Scholar 

  • Broadbear JH, Winger G, Woods JH (2005) Self-administration of methohexital, midazolam and ethanol: effects on the pituitary-adrenal axis in rhesus monkeys. Psychopharmacology 178:83–91

    Article  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22:2977–2988

    Article  CAS  Google Scholar 

  • Capacio BR, Harris LW, Anderson DR, Lennox WJ, Gales V, Dawson JS (1992) Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. Drug Chem Toxicol 15:177–201

    Article  CAS  Google Scholar 

  • Cavero I (2009) Exploratory safety pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations. Expert Opin Drug Saf 8:627–647

    Article  CAS  Google Scholar 

  • Cazacu I, Mogosan C, Loghin F (2015) Safety issues of current analgesics: an update. Cluzul Med 88:128–136

    Google Scholar 

  • Colpaert FC (1987) Drug discrimination: methods of manipulation, measurement, and analysis. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer-Verlag, New York, pp 341–372

    Chapter  Google Scholar 

  • Colpaert FC, Slangen JL (1982) Drug discrimination applications in CNS pharmacology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Corrigall WA (1999) Nicotine self-administration in animals as a dependence model. Nicotine Tobacco Res 1:11–20

    Article  CAS  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharm Exp Ther 72:74–79

    Google Scholar 

  • Drinkenburg WHIM, Ahnaou A, Ruigt GSF (2015) Pharmaco-EEG studies in animals: a history-based introduction to contemporary translational applications. Neuropsychobiology 72:139–150

    Article  CAS  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in mice and in rats. J Am Pharm Ass 46:208–209

    Article  CAS  Google Scholar 

  • Dunnett SB, Evenden JL, Iversen SD (1988) Delay-dependent short-term memory deficits in aged rats. Psychopharmacology 96:174–180

    Article  CAS  Google Scholar 

  • DĂĽrmĂĽller N, Guillaume P, Lacroix P, Porsolt RD, Moser P (2007) The use of the dog electroencephalogram (EEG) in safety pharmacology to evaluate proconvulsant risk. J Pharmacol Toxicol Methods 56:234–238

    Article  Google Scholar 

  • Easter A, Bell ME, Damewood JR Jr, Redfern WS, Valentin JP, Winter MJ, Fonck C, Bialecki RA (2009) Approaches to seizure risk assessment in preclinical drug discovery. Drug Discov Today 14:876–884

    Article  CAS  Google Scholar 

  • Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Arch Pharmacol 356:341–347

    Article  CAS  Google Scholar 

  • Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutymamines. J Pharm Exp Ther 107:385–393

    CAS  Google Scholar 

  • Esneault E, Peyon G, Froger-CollĂ©aux C, CastagnĂ© V (2015) Evaluation of pro-convulsant risk in the rat: spontaneous and provoked convulsions. J Pharmacol Toxicol Methods 72:59–66

    Article  CAS  Google Scholar 

  • Esteve J, Farre AJ, Roser R (1988) Pharmacological profile of droxicam. Gen Pharmacol 19:49–54

    Article  CAS  Google Scholar 

  • Ewart L, Gallacher DJ, Gintant G, Guillon JM, Leishman D, Levesque P, McMahon N, Mylecraine L, Sanders M, Suter W, Wallis R, Valentin JP (2012) How do the top 12 pharmaceutical companies operate safety pharmacology? J Pharmacol Toxicol Methods 66:66–70

    Article  CAS  Google Scholar 

  • Ewart L, Milne A, Adkins D, Benjamin A, Bialecki R, Chen Y, Ericsson AC, Gardner S, Grant C, Lengel D, Lindgren S, Lowing S, Marks L, Moors J, Oldman K, Pietras M, Prior H, Punton J, Redfern WS, Salmond R, Skinner M, Some M, Stanton A, Swedberg M, Finch J, Valentin JP (2013) A multi-site comparison of in vivo safety pharmacology studies conducted to support ICH S7A & B regulatory submissions. J Pharmacol Toxicol Methods 68:30–43

    Article  CAS  Google Scholar 

  • FDA Assessment of Abuse Potential of Drugs – Guidance for Industry (2017)

    Google Scholar 

  • Foltin RW, Fischman MW (1992) The cardiovascular and subjective effects of intravenous cocaine and morphine combinations in humans. J Pharmacol Exp Ther 261:623–632

    CAS  Google Scholar 

  • Fonck C, Easter A, Pietras MR, Bialecki RA (2015) CNS adverse effects: from functional observation battery/Irwin tests to electrophysiology. Handb Exp Pharmacol 229:83–113

    Article  Google Scholar 

  • France CP, Moerschbaecher JM, Woods JH (1991) MK-801 and related compounds in monkeys: discriminative stimulus effects and effects on a conditional discrimination. J Pharmacol Exp Ther 257:727–734

    CAS  Google Scholar 

  • France CP, Medzihradsky F, Woods JH (1994) Comparison of kappa opioids in rhesus monkeys: behavioral effects and binding affinities. J Pharmacol Exp Ther 268:47–58

    CAS  Google Scholar 

  • France CP, Gerak LR, Winger GD, Medzihradsky F, Bagley JR, Brockunier LL, Woods JH (1995) Behavioral effects and receptor binding affinities of fentanyl derivatives in rhesus monkeys. J Pharmacol Exp Ther 274:17–28

    CAS  Google Scholar 

  • Franconi F, Campesi I (2014) Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol 171:580–594

    Article  CAS  Google Scholar 

  • Franklin KB (1998) Analgesia and abuse potential: an accidental association or a common substrate? Pharmacol Biochem Behav 59:993–1002

    Article  CAS  Google Scholar 

  • Froger-Colleaux C, Rompion S, Guillaume P, Porsolt RD, CastagnĂ© V, Moser P (2011) Continuous evaluation of drug withdrawal in the rat using telemetry: effects of morphine and chlordiazepoxide. J Pharmacol Toxicol Methods 61:81–88

    Article  Google Scholar 

  • Gauvin DV, Zimmermann ZJ (2019) FOB vs modified Irwin: what are we doing? J Pharmacol Toxicol Methods 97:24–28

    Article  CAS  Google Scholar 

  • Gauvin DV, Zimmermann ZJ, Dalton JA, Baird TJ, Kallman MJ (2019) CNS safety screening under ICH S7A guidelines requires observations of multiple behavioral units to assess motor function. Int J Toxicol 38:339–356

    Article  CAS  Google Scholar 

  • Gerak LR, France CP (1999) Discriminative stimulus effects of flumazenil in untreated and in diazepam-treated rhesus monkeys. Psychopharmacology 146:252–261

    Article  CAS  Google Scholar 

  • Gold LH, Balster RL (1996) Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology 126:286–292

    Article  CAS  Google Scholar 

  • Goudie AJ, Harrison AA, Leathley MJ (1993) Evidence for a dissociation between benzodiazepine withdrawal signs. Neuro Rep 4:295–299

    CAS  Google Scholar 

  • Grasing K, Wang A, Schlussman S (1996) Behavioral measures of anxiety during opiate withdrawal. Behav Brain Res 80:195–201

    Article  CAS  Google Scholar 

  • Griffiths RR, Balster RL (1979) Opioids: similarity between evaluations of subjective and animal self-administration results. Clin Pharmacol Ther 25:611–617

    Article  CAS  Google Scholar 

  • Griffiths RR, Bigelow GE, Henningfield JE (1980) Similarities in animal and human drug taking behavior. In: Mello NK (ed) Advances in substance abuse, behavioral and biological research, vol 1. JAI Press, Greenwich, pp 1–90

    Google Scholar 

  • Hamdam J, Sethu S, Smith T, Alfirevic A, Alhaidari M, Atkinson J, Ayala M, Box H, Cross M, Delaunois A, Dermody A, Govindappa K, Guillon JM, Jenkins R, Kenna G, Lemmer B, Meecham K, Olayanju A, Pestel S, Rothfuss A, Sidaway J, Sison-Young R, Smith E, Stebbings R, Tingle Y, Valentin JP, Williams A, Williams D, Park K, Goldring C (2013) Safety pharmacology – current and emerging concepts. Toxicol Appl Pharmacol 273:229–241

    Article  CAS  Google Scholar 

  • Hernier AM, Froger-CollĂ©aux C, CastagnĂ© V (2016) CNS safety pharmacology: a focus on cognitive functions. J Pharmacol Toxicol Methods 81:286–294

    Article  CAS  Google Scholar 

  • Himmel HM (2008) Safety pharmacology assessment of central nervous system function in juvenile and adult rats: effects of pharmacological reference compounds. J Pharmacol Toxicol Methods 58:129–146

    Article  CAS  Google Scholar 

  • Himmel HM, Irwin/FOB Consortium Members, Delaunois A, Deurinck M, Dinklo T, Eriksson Faelker TM, Habermann C, Heers C, Hempel K, Lorenz H, Rosch A, Schauerte H, Teuns G, Traebert M, van Amsterdam C, van der Linde H (2019) Variability of non-clinical behavioral CNS safety assessment: an intercompany comparison. J Pharmacol Toxicol Methods 99:106571

    Article  CAS  Google Scholar 

  • ICH M3 (R2) (2009) Non-clinical safety studies for the conduct of human clinical trials for pharmaceuticals

    Google Scholar 

  • Irwin S (1968) Comprehensive behavioral assessment: 1a a systematic quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257

    Article  CAS  Google Scholar 

  • Jackson SJ, Authier S, Brohmann H, Goody SMG, Jones D, Prior H, Rosch A, Traebert M, Tse K, Valentin JP, Milne A (2019) Neurofunctional test batteries in safety pharmacology – current and emerging considerations for the drug development process. J Pharmacol Toxicol Methods 100:106602

    Article  CAS  Google Scholar 

  • Kalinichev M, Holtzman SG (2003) Changes in urination/defecation, auditory startle response, and startle-induced ultrasonic vocalizations in rats undergoing morphine withdrawal: similarities and differences between acute and chronic dependence. J Pharmacol Exp Ther 304:603–609

    Article  CAS  Google Scholar 

  • Kerlin R, Bolon B, Burkhardt J, Francke S, Greaves P, Meador V, Popp J (2016) Scientific and regulatory policy committee: recommended (“Best”) practices for determining, communicating, and using adverse effect data from nonclinical studies. Toxicol Pathol 44:147–162

    Article  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19:409–428

    Article  CAS  Google Scholar 

  • Krijzer FN, van der Molen R (1987) Classification of psychotropic drugs by rat EEG analysis: the anxiolytic profile in comparison to the antidepressant and neuroleptic profile. Neuropsychobiology 18:51–56

    Article  CAS  Google Scholar 

  • Kupferberg H (2001) Animal models used in the screening of antiepileptic drugs. Epilepsia 42:7–12

    Article  Google Scholar 

  • Kushikata T, Hirota K, Yoshida H, Kudo M, Lambert DG, Smart D, Jerman JC, Matsuki A (2003) Orexinergic neurons and barbiturate anesthesia. Neuroscience 121:855–863

    Article  CAS  Google Scholar 

  • Lancel M (1999) Role of GABA-A receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22:33–42

    Article  CAS  Google Scholar 

  • Lee MR, Tapocik JD, Ghareeb M, Schwandt ML, Dias AA, Le AN, Cobbina E, Farinelli LA, Bouhlal S, Farokhnia M, Heilig M, Akhlaghi F, Leggio L (2018) The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 25:461–475

    Article  Google Scholar 

  • Lemaire M, Böhme GA, Piot O, Roques BP, Blanchard JC (1994) CCK-A and CCK-B selective receptor agonists and antagonists modulate olfactory recognition in male rats. Psychopharmacology 115:435–440

    Article  CAS  Google Scholar 

  • Lindgren S, Bass AS, Briscoe R, Bruse K, Friedrichs GS, Kallman MJ, Markgraf C, Patmore L, Pugsley MK (2008) Benchmarking safety pharmacology regulatory packages and best practice. J Pharmacol Toxicol Methods 58:99–109

    Article  CAS  Google Scholar 

  • Löscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123

    Article  Google Scholar 

  • Löscher W (2009) Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol 610:1–11

    Article  Google Scholar 

  • LĂĽttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 98:579–586

    Article  Google Scholar 

  • Lynch JJ III, Shek EW, CastagnĂ© V, Mittelstadt SW (2010) The proconvulsant effects of leptin on glutamate receptor-mediated seizures in mice. Brain Res Bull 82:99–103

    Article  CAS  Google Scholar 

  • Lynch JJ III, CastagnĂ© V, Moser PC, Mittelstadt SW (2011) Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J Pharmacol Toxicol Methods 64:74–80

    Article  CAS  Google Scholar 

  • Maldonado R, Rodriguez de Fonseca F (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22:3326–3331

    Article  CAS  Google Scholar 

  • Mangipudy R, Burkhardt J, Kadambi VJ (2014) Use of animals for toxicology testing is necessary to ensure patient safety in pharmaceutical development. Reg Toxicol Pharmacol 70:439–441

    Article  CAS  Google Scholar 

  • Marazziti D, Baroni S, Picchetti M, Piccinni A, Carlini M, Vatteroni E, Falaschi V, Lombardi A, Dell’Osso L (2013) Pharmacokinetics and pharmacodynamics of psychotropic drugs: effect of sex. CNS Spectr 18:118–127

    Article  Google Scholar 

  • Mattson JL, Spencer PJ, Albee RR (1996) A performance standard for clinical and functional observational battery examination of rats. J Am Coll Toxicol 15:239–250

    Article  Google Scholar 

  • Meert TF (1994) Pharmacological evaluation of alcohol withdrawal-induced inhibition of exploratory behaviour and supersensitivity to harmine-induced tremor. Alcohol Alcohol 29:91–102

    CAS  Google Scholar 

  • Monti JM, Jantos H (2011) Effects of the 5-HT(2A) receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle. Behav Brain Res 216:381–388

    Article  CAS  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Moscardo E, Rostello C (2010) An integrated system for video and telemetric electroencephalographic recording to measure behavioural and physiological parameters. J Pharmacol Toxicol Methods 62:64–71

    Article  CAS  Google Scholar 

  • Moser P, Wolinsky T, CastagnĂ© V, Duxon M (2011a) Current approaches and issues in non-clinical evaluation of abuse and dependence. J Pharmacol Toxicol Methods 63:160–167

    Article  CAS  Google Scholar 

  • Moser P, Wolinsky T, Duxon M, Porsolt RD (2011b) How good are current approaches to nonclinical evaluation of abuse and dependence? J Pharmacol Exp Ther 336:588–595

    Article  CAS  Google Scholar 

  • Mow T, Andersen NK, Dragstedt N, Lassen AB, Laursen M, Bass AS, Valentin JP, Markgraf C, Authier S, Baird TJ, Bhatt S, Traebert M, Leishman DJ, Jones D, Curtis MJ (2020) Is there a role for the no observed adverse effect level in safety pharmacology? J Pharm Tox Meth 105:106917

    Article  CAS  Google Scholar 

  • Negus SS, Mello NK (2004) Effects of chronic methadone treatment on cocaine- and food-maintained responding under second-order, progressive-ratio and concurrent-choice schedules in rhesus monkeys. Drug Alcohol Depend 74:297–309

    Article  CAS  Google Scholar 

  • Porsolt RD (1997) Safety pharmacology – a critical perspective. Drug Dev Res 41:51–57

    Article  CAS  Google Scholar 

  • Porsolt RD (2013) The usefulness of non-human primates in central nervous system safety pharmacology. J Pharmacol Toxicol Methods 68:23–29

    Article  CAS  Google Scholar 

  • Porsolt RD, Lemaire M, DĂĽrmĂĽller N, Roux S (2002) New perspectives in CNS safety pharmacology. Fundam Clin Pharmacol 16:197–207

    Article  CAS  Google Scholar 

  • Pugsley MK, Authier S, Stonerook M, Curtis MJ (2015) The shifting landscape of safety pharmacology in 2015. J Pharmacol Toxicol Methods 75:5–9

    Article  CAS  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. Electroencephalogr Clin Neurophysiol 32:269–299

    Article  CAS  Google Scholar 

  • Reiter LR, McPhail RC (1979) Motor activity: a survey of methods with potential use in toxicity testing. Neurobehav Toxicol 1:53–66

    CAS  Google Scholar 

  • Remmer H (1972) Induction of drug metabolizing enzyme system in the liver. Eur J Clin Pharmacol 5:116–136

    Article  CAS  Google Scholar 

  • Roux S, Hubert I, Lenegre A, Milinkevitch D, Porsolt RD (1994) Effects of piracetam on indices of cognitive function in a delayed alternation task in young and aged rats. Pharmacol Biochem Behav 49:683–688

    Article  CAS  Google Scholar 

  • Ruigt GSF, Van Proosdij JN, Van Delft AML (1989) A large scale, high resolution, automated system for rat sleep staging. I: methodology and technical aspects. EEG Clin Neurophysiol 73:52–63

    Article  CAS  Google Scholar 

  • Rustay NR, Wahlsten D, Crabbe JC (2003) Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res 141:237–249

    Article  CAS  Google Scholar 

  • Saelens JK, Granat FR, Sawyer WK (1971) The mouse jumping test: a simple screening method to estimate the physical dependence capacity of analgesics. Arch Int Pharmacodyn Ther 190:213–218

    CAS  Google Scholar 

  • Sawyer TF, Hengehold AK, Perez WA (1984) Chemosensory and hormonal mediation of social memory in male rats. Behav Neurosci 98:908–913

    Article  CAS  Google Scholar 

  • Schechter MD, Calcagnetti DJ (1993) Trends in place preference conditioning, with a cross-indexed bibliography. Neurosci Biobehav Rev 17:21–41

    Article  CAS  Google Scholar 

  • Semba J, Wakuta M, Maeda J, Suhara T (2004) Nicotine withdrawal induces subsensitivity of hypothalamic-pituitary-adrenal axis to stress in rats: implications for precipitation of depression during smoking cessation. Psychoneuroendocrinology 29:215–226

    Article  CAS  Google Scholar 

  • Shelton KL, Dukat M, Allan AM (2004) Effects of 5-HT3 receptor over-expression on the discriminative stimulus effects of ethanol. Alcohol Clin Exper Res 28:1161–1171

    Article  CAS  Google Scholar 

  • Shoaib M, Stolerman IP, Kumar RC (1994a) Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology 113:445–452

    Article  CAS  Google Scholar 

  • Shoaib S, Stolerman IP, Kumar RC (1994b) Nicotine-induced place preference following prior nicotine exposure. Psychopharmacology 113:445–452

    Article  CAS  Google Scholar 

  • Simon P, Chermat R, DoarĂ© L, Bourin M, Farinotti R (1992) Interactions imprĂ©vues de divers psychotropes avec les effets du barbital et du pentobarbital chez la souris. J Pharmacol (Paris) 13:241–252

    Google Scholar 

  • Solinas M, Panililio LV, Goldberg SR (2004) Exposure to delta-9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin’s reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology 29:1301–1311

    Article  CAS  Google Scholar 

  • Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206

    Article  CAS  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Ann Rev Neurosci 27:279–306

    Article  CAS  Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330

    CAS  Google Scholar 

  • Tatum WO (2012) Mesial temporal lobe epilepsy. J Clin Neurophysiol 29:356–365

    Article  Google Scholar 

  • Thomsen M, Caine SB (2005) Chronic intravenous drug self-administration in rats and mice. In: Current protocols in neurosciences pp 9.20.1–9.20.40

    Google Scholar 

  • Valentin JP, Bialecki R, Ewart L, Hammond T, Leishmann D, Lindgren S, Martinez V, Pollard C, Redfern W, Wallis R (2009) A framework to assess the translation of safety pharmacology data to humans. J Pharmacol Toxicol Methods 60:152–158

    Article  CAS  Google Scholar 

  • Van Riezen H, Glatt AF (1993) Introduction and history of the use of electroencephalography in animal drug studies. Neuropsychobiology 28:118–125

    Article  Google Scholar 

  • Von Voigtlander PF, Lewis RA (1991) A rapid screening method for the assessment of benzodiazepine receptor-related physical dependence in mice. Evaluation of benzodiazepine-related agonists and partial agonists. J Pharmacol Methods 26:1–5

    Article  Google Scholar 

  • Vuillemenot BR, Korte S, Wright TL, Adams EL, Boyd RB, Butt MT (2016) Safety evaluation of CNS administered biologics-study design, data interpretation, and translation to the clinic. Toxicol Sci 152:3–9

    Article  CAS  Google Scholar 

  • Walker EA, Picker MJ, Dykstra LA (2001) Three-choice discrimination in pigeons is based on relative efficacy differences among opioids. Psychopharmacology 155:389–386

    Article  CAS  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  Google Scholar 

  • White HS, Porter RJ, Kupferberg HJ (2008) Screnning of new compounds and the role of the pharmaceutical industry. In: Engel JJ, Pedley TA (eds) Epilepsy. A comprehensive textbook, 2nd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1469–1485

    Google Scholar 

  • Wilcox KM, Rowlett JK, Paul IA, Ordway GA, Woolverton WL (2000) On the relationship between the dopamine transporter and the reinforcing effects of local anesthetics: practical and theoretical concerns. Psychopharmacology 153:139–147

    Article  CAS  Google Scholar 

  • Yoshimura M, Yonehara N, Ito T, Kawai Y, Tamura T (2000) Effects of topically applied capsaicin cream on neurogenic inflammation and thermal sensitivity in rats. Jpn J Pharmacol 82:116–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Froger-Colléaux .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Froger-Colléaux, C., Esneault, E., Hernier, A.M., Goineau, S., Castagné, V. (2022). Central Nervous System (CNS) Safety Pharmacology Studies. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics