Skip to main content

Dermal Absorption: Considerations on Risk Assessment, Drug Administration, and the Human Skin Microbiome

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

The following chapter describes the human skin and its complexity. On the one hand, the skin protects against external influences; on the other, it provides a large surface area for the absorption of substances. In this context, the process of dermal absorption and its influencing factors are presented. Different legal jurisdictions are outlined in the context of dermal absorption and health risk assessment of substances. Several types of drug delivery systems – the dermal system, transdermal system, film-forming system, minimally invasive transdermal drug delivery, and in silico approaches – are explained in detail by presenting respective case studies. Furthermore, the important role of human skin microbiota in barrier function is explained.

Complying with the 3Rs rules, in vitro studies on dermal absorption have been established. Moreover, efforts have been made in developing in silico approaches but have revealed difficulties by modeling dermal absorption process of formulations over single compounds. Drug delivery systems might be promising alternatives over conventional methods due to the avoidance of the first-pass metabolic effect, lowering development of potential negative side effects and enhancing patient compliance. The skin microbiome has been highlighted for its influence on skin barrier function. However, large-scale studies are still needed to apply this existing knowledge to product development. Overall, the skin is one of the largest organs in the human body – hence it deserves special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Abdo JM, Sopko NA, Milner SM (2020) The applied anatomy of human skin: a model for regeneration. Wound Med 28:100179. https://doi.org/10.1016/j.wndm.2020.100179

    Article  Google Scholar 

  • Aich K, Singh T, Dang S (2022) Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res 12:1556–1568

    Article  CAS  Google Scholar 

  • Allen DG, Rooney J, Kleinstreuer N et al (2021) Retrospective analysis of dermal absorption triple pack data. ALTEX 38:463–476

    Google Scholar 

  • Andersen FA (1998) Final report on the safety assessment of Glycolic Acid, Ammonium, Calcium, Potassium, and Sodium Glycolates, Methyl, Ethyl, Propyl, and Butyl Glycolates, and Lactic Acid, Ammonium, Calcium, Potassium, Sodium, and Tea-Lactates, Methyl, Ethyl, Isopropyl, and Butyl Lactates, and Lauryl, Myristyl, and Cetyl Lactates. Int J Toxicol 17:1–241

    Article  Google Scholar 

  • Anissimov YG, Roberts MS (2001) Diffusion modeling of percutaneous absorption kinetics: 2. Finite vehicle volume and solvent deposited solids. J Pharm Sci 90:504–520

    Article  CAS  Google Scholar 

  • Barnard E, Shi B, Kang D et al (2016) The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep 6:39491

    Article  CAS  Google Scholar 

  • Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169. https://doi.org/10.1034/j.1600-0625.2000.009003165.x

    Article  CAS  Google Scholar 

  • Boulanger N, Lenormand C (2018) Chapter 1 – Skin immunity and microbiome. In: Boulanger N (ed) Skin and arthropod vectors. Academic Press, pp 1–28. https://doi.org/10.1016/B978-0-12-811436-0.00001-0

    Chapter  Google Scholar 

  • Boxberger M, Cenizo V, Cassir N et al (2021) Challenges in exploring and manipulating the human skin microbiome. Microbiome 9:125

    Article  Google Scholar 

  • Butler É, Lundqvist C, Axelsson J (2020) Lactobacillus reuteri DSM 17938 as a novel topical cosmetic ingredient: a proof of concept clinical study in adults with atopic dermatitis. Microorganisms 8:1026

    Article  Google Scholar 

  • Byrd AL, Deming C, Cassidy SKB et al (2017) Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med 9:eaal4651

    Article  Google Scholar 

  • Chambers ES, Vukmanovic-Stejic M (2020) Skin barrier immunity and ageing. Immunology 160:116–125. https://doi.org/10.1111/imm.13152

    Article  CAS  Google Scholar 

  • Chang HW, Yan D, Singh R et al (2018) Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 6:154

    Article  Google Scholar 

  • Chen L, Li J, Zhu W et al (2020) Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol 11:589726

    Article  Google Scholar 

  • Clausen ML, Agner T, Lilje B et al (2018) Association of Disease Severity with Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol 154:293–300

    Article  Google Scholar 

  • Couto A, Fernandes R, Reis S et al (2013) Dermic diffusion and stratum corneum: a state of the art review of mathematical models. J Control Release 177:74–83

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Diegel KL, Danilenko DM, Wojcinski ZW (2013) Chapter 55 – Integument. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Haschek and Rousseaux’s handbook of toxicologic pathology, 3rd edn. Academic Press, Boston, pp 2219–2275. https://doi.org/10.1016/B978-0-12-415759-0.00055-8

    Chapter  Google Scholar 

  • DiNatale L, Idkowiak-Baldys J, Zhuang Y et al (2021) Novel rotational combination regimen of skin topicals improves facial photoaging: efficacy demonstrated in double-blinded clinical trials and laboratory validation. Front Med (Lausanne) 8:724344

    Article  Google Scholar 

  • Diridollou S, De Rigal J, Querleux B et al (2007) Comparative study of the hydration of the stratum corneum between four ethnic groups: influence of age. Int J Dermatol 46:11–14. https://doi.org/10.1111/j.1365-4632.2007.03455.x

    Article  Google Scholar 

  • Ditre CM, Griffin TD, Murphy GF et al (1996) Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study. J Am Acad Dermatol 34:187–195

    Article  CAS  Google Scholar 

  • Donato AJ, Henson GD, Hart CR et al (2014) The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. J Physiol 592:4083–4096

    Article  CAS  Google Scholar 

  • Dréno B, Araviiskaia E, Berardesca E et al (2016) Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 30:2038–2047

    Article  Google Scholar 

  • Dumont C, Prieto P, Asturiol D et al (2015) Review of the availability of in vitro and in silico methods for assessing dermal bioavailability applied. Vitro Toxicol 1:147–164

    Article  Google Scholar 

  • Economidou SN, Pere CPP, Reid A et al (2019) 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C 102:743–755. https://doi.org/10.1016/j.msec.2019.04.063

    Article  CAS  Google Scholar 

  • Edslev SM, Agner T, Andersen PS (2020) Skin microbiome in atopic dermatitis. Acta Derm Venereol 100:adv00164

    Article  CAS  Google Scholar 

  • EFSA, Buist H, Craig P et al (2017) Guidance on dermal absorption. EFSA J 15. https://doi.org/10.2903/j.efsa.2017.4873

  • EFSA Panel on Plant Protection Products their Residues (2012) Guidance on dermal absorption. EFSA J 10(4):2665. ISSN: 1831–4732. https://doi.org/10.2903/j.efsa.2012.2665

  • Eleftheriadou D, Luette S, Kneuer C (2019) In silico prediction of dermal absorption of pesticides – an evaluation of selected models against results from in vitro testing. SAR QSAR Environ Res 30:561–585

    Article  CAS  Google Scholar 

  • EMA (1995) ICH Topic S 3 A, Toxicokinetics: a guidance for assessing systemic exposure in toxicology studies, Step 5. https://www.ema.europa.eu/en/ich-s3a-toxicokinetics-assessment-systemic-exposure-toxicity-studies-scientific-guideline. Accessed Nov 1994

  • EU_COM (2004) Regulation (EC) No 726/2004 of the European Parliament and of the Council of 31 March 2004 laying down Community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. http://data.europa.eu/eli/reg/2004/726/o. Accessed 28 Jan 2022

  • EU_COM (2009a) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107. Accessed 21 Nov 2022

  • EU_COM (2009b) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223. Accessed 17 Dec 2022

  • EU_COM (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0528. Accessed 15 Apr 2022

  • EU_COM (2013a) Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013R0283. Accessed 21 Nov 2022

  • EU_COM (2013b) Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32013R0284. Accessed 21 Nov 2022

  • Eyerich S, Eyerich K, Traidl-Hoffmann C et al (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39:315–327

    Article  CAS  Google Scholar 

  • Ferreira A, Vecino X, Ferreira D et al (2017) Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf B Biointerfaces 155:522–529

    Article  CAS  Google Scholar 

  • Frederiksen K, Guy RH, Petersson K (2016) The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert Opin Drug Deliv 13:349–360

    Article  CAS  Google Scholar 

  • Freiberger H, Grove D, Sivarajah A et al (1980) Procollagen I synthesis in human skin fibroblasts: effect on culture conditions on biosynthesis. J Invest Dermatol 75:425–430

    Article  CAS  Google Scholar 

  • Gattu S, Maibach HI (2010) Enhanced absorption through damaged skin: an overview of the in vitro human model. Skin Pharmacol Physiol 23:171–176

    Article  CAS  Google Scholar 

  • Gerstel MS, Place VA (1971) Drug delivery device, Patent no. US3964482A Google Patents. https://patents.google.com/patent/US3964482A/en

  • Glamour (2022) Microbiome is the latest buzzword in skincare, but what on earth is it, and how can it give us clearer, healthier skin? https://www.glamourmagazine.co.uk/gallery/skin-microbiome-products

  • Goldštajn MŠ, Mikuš M, Ferrari FA et al (2022) Effects of transdermal versus oral hormone replacement therapy in postmenopause: a systematic review. Arch Gynecol Obstet

    Google Scholar 

  • Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  Google Scholar 

  • Guéniche A, Bastien P, Ovigne JM et al (2010) Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol 19:e1–e8

    Article  Google Scholar 

  • Harris-Tryon TA, Grice EA (2022) Microbiota and maintenance of skin barrier function. Science 376:940–945

    Article  CAS  Google Scholar 

  • He X, Sun J, Zhuang J et al (2019) Microneedle system for transdermal drug and vaccine delivery: devices, safety, and prospects. Dose-Response 17:1559325819878585

    Article  CAS  Google Scholar 

  • Hirsch L, Gibney M, Berube J et al (2012) Impact of a modified needle tip geometry on penetration force as well as acceptability, preference, and perceived pain in subjects with diabetes. J Diabetes Sci Technol 6:328–335

    Article  Google Scholar 

  • Holz C, Benning J, Schaudt M et al (2017) Novel bioactive from lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study. Benef Microbes 8:121–131

    Article  CAS  Google Scholar 

  • Hoppel M, Kwizda K, Baurecht D et al (2016) The effect of a damaged skin barrier on percutaneous absorption of SDS and skin hydration investigated by confocal Raman spectroscopy. Exp Dermatol 25:390–392

    Article  Google Scholar 

  • Hsu DK, Fung MA, Chen H-L (2020) Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. Med Microecol

    Google Scholar 

  • Järvinen A, Nykänen S, Paasiniemi L (1999) Absorption and bioavailability of oestradiol from a gel, a patch and a tablet. Maturitas 32:103–113

    Article  Google Scholar 

  • Järvinen A, Bäckström A, Elfström C et al (2001) Comparative absorption and variability in absorption of estradiol from a transdermal gel and a novel matrix-type transdermal patch. Maturitas 38:189–196

    Article  Google Scholar 

  • Jiao Q, Yue L, Zhi L et al (2022) Studies on stratum corneum metabolism: function, molecular mechanism and influencing factors. J Cosmet Dermatol 21:3256–3264. https://doi.org/10.1111/jocd.15000

    Article  Google Scholar 

  • Jung YO, Jeong H, Cho Y et al (2019) Lysates of a probiotic, Lactobacillus rhamnosus, can improve skin barrier function in a reconstructed human epidermis model. Int J Mol Sci:20

    Google Scholar 

  • Kathe K, Kathpalia H (2017) Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci 12:487–497. https://doi.org/10.1016/j.ajps.2017.07.004

    Article  Google Scholar 

  • Kaunitz AM, Manson JE (2015) Management of menopausal symptoms. Obstet Gynecol 126:859–876

    Article  Google Scholar 

  • Kaushik S, Hord AH, Denson DD et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504

    Article  CAS  Google Scholar 

  • Kennedy EA, Connolly J, Hourihane JO et al (2017) Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 139:166–172

    Article  Google Scholar 

  • Kim BE, Leung DYM (2018) Significance of skin barrier dysfunction in atopic dermatitis allergy asthma. Immunol Res 10:207–215

    CAS  Google Scholar 

  • Kneuer C, Charistou A, Craig P et al (2018) Applicability of in silico tools for the prediction of dermal absorption for pesticides. EFSA Supporting Publications 15:1493E. https://doi.org/10.2903/sp.efsa.2018.EN-1493

    Article  Google Scholar 

  • Konda S, Meier-Davis SR, Cayme B et al (2012) Age-related percutaneous penetration part 2: effect of age on dermatopharmacokinetics and overview of transdermal products. Skin Therapy Lett 17:5–7

    CAS  Google Scholar 

  • Korinth G, Wellner T, Schaller KH et al (2012) Potential of the octanol–water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions. Toxicol Lett 215:49–53. https://doi.org/10.1016/j.toxlet.2012.09.013

    Article  CAS  Google Scholar 

  • Korting HC, Kiencke P, Nelles S et al (2007) Comparable efficacy and safety of various topical formulations of terbinafine in tinea pedis irrespective of the treatment regimen: results of a meta-analysis. Am J Clin Dermatol 8:357–364

    Article  Google Scholar 

  • Korytkowski M, Niskanen L, Asakura T (2005) FlexPen®: addressing issues of confidence and convenience in insulin delivery. Clin Ther 27:S89–S100. https://doi.org/10.1016/j.clinthera.2005.11.019

    Article  Google Scholar 

  • Krackowizer P, Brenner E (2008) Thickness of the human skin 24 points of measurement. Phlebologie 37:83–92

    Article  Google Scholar 

  • Kruglikov IL, Scherer PE (2016) Dermal adipocytes: from irrelevance to metabolic targets? Trends Endocrinol Metab 27:1–10

    Article  CAS  Google Scholar 

  • Kruglikov IL, Scherer PE (2018) Skin aging as a mechanical phenomenon: the main weak links. Nutr Healthy Aging 4:291–307

    Article  CAS  Google Scholar 

  • Kuster CJ, Baumann J, Braun SM et al (2022) In silico prediction of dermal absorption from non-dietary exposure to plant protection products. Comput Toxicol 24:100242. https://doi.org/10.1016/j.comtox.2022.100242

    Article  CAS  Google Scholar 

  • La Count TD, Zhang Q, Murawsky M et al (2020) Evaluation of heat effects on transdermal nicotine delivery in vitro and in silico using heat-enhanced transport model analysis. AAPS J 22:82–82

    Article  Google Scholar 

  • LaCount TD, Zhang Q, Hao J et al (2020) Modeling temperature-dependent dermal absorption and clearance for transdermal and topical drug applications. AAPS J 22:70

    Article  CAS  Google Scholar 

  • Lai Y, Cogen AL, Radek KA et al (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130:2211–2221

    Article  CAS  Google Scholar 

  • Landemaine L, Cenizo V, Lemaire GJ et al (2018) 961 Colonization of a 3D skin model with a complete microbiota is more beneficial to the skin barrier than with Staphylococcus epidermidis alone. J Investig Dermatol 138:S163

    Article  Google Scholar 

  • Lau WM, Ng KW (2017) Finite and infinite dosing. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers drug penetration into/through the skin: methodology and general considerations. Springer, Berlin/Heidelberg, pp 35–44

    Chapter  Google Scholar 

  • Lee Y, Hwang K (2002) Skin thickness of Korean adults. Surg Radiol Anat 24:183–189

    Article  CAS  Google Scholar 

  • Lemoine L, Dieckmann R, Al Dahouk S et al (2020) Microbially competent 3D skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Arch Toxicol 94:3487–3502

    Article  CAS  Google Scholar 

  • Lemoine L, Bayrambey D, Roloff A et al (2021) Commensal-related changes in the epidermal barrier function lead to alterations in the benzo[a]pyrene metabolite profile and its distribution in 3D skin. MBio 12:e0122321

    Article  Google Scholar 

  • Levitz M, Young BK (1978) Estrogens in pregnancy. In: Munson PL, Diczfalusy E, Glover J, Olson RE (eds) Vitamins & hormones, vol 35. Academic Press, London, pp 109–147. https://doi.org/10.1016/S0083-6729(08)60522-1

    Chapter  Google Scholar 

  • Loomis KH, Wu SK, Ernlund A et al (2021) A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. Microbiome 9:22

    Article  CAS  Google Scholar 

  • Lopez-Ojeda W, Pandey A, Alhajj M et al (2022) Anatomy, skin (integument). In: StatPearls (ed) StatPearls Publishing Copyright © 2022. StatPearls Publishing LLC, Treasure Island

    Google Scholar 

  • Lunjani N, Ahearn-Ford S, Dube FS et al (2021) Mechanisms of microbe-immune system dialogue within the skin. Genes Immun 22:276–288

    Article  Google Scholar 

  • Mangelsdorf S, Otberg N, Maibach HI et al (2006) Ethnic variation in vellus hair follicle size and distribution. Skin Pharmacol Physiol 19:159–167

    Article  CAS  Google Scholar 

  • Mayslich C, Grange PA, Dupin N (2021) Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors. Microorganisms:9

    Google Scholar 

  • McBride J (1957) Estrogen excretion levels in the normal postmenopausal woman. J Clin Endocrinol Metab 17:1440–1447

    Article  CAS  Google Scholar 

  • Meisel JS, Sfyroera G, Bartow-McKenney C et al (2018) Commensal microbiota modulate gene expression in the skin. Microbiome 6:20

    Article  Google Scholar 

  • Monteiro-Riviere N (2004) Anatomical factors affecting barrier function. ISSN: 978-0-8493-9773-8. https://doi.org/10.1201/9780203426272.ch4

  • Monteiro-Riviere NA, Bristol DG, Manning TO et al (1990) Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Invest Dermatol 95:582–586

    Google Scholar 

  • Murphrey MB, Miao JH, Zito PM (2022) Histology, stratum corneum. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513299/

    Google Scholar 

  • Nakatsuji T, Cheng JY, Gallo RL (2021) Mechanisms for control of skin immune function by the microbiome. Curr Opin Immunol 72:324–330. https://doi.org/10.1016/j.coi.2021.09.001

    Article  CAS  Google Scholar 

  • National Library of Medicine (2004) National Center for Biotechnology Information. PubChem Compound Summary for CID 89594, Nicotine. PubChem [Internet]. National Library of Medicine (US), Bethesda [cited 2 Feb 2023]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Nicotine. Accessed 29 Nov 2022

  • Niehues H, Bouwstra JA, El Ghalbzouri A et al (2018) 3D skin models for 3R research: the potential of 3D reconstructed skin models to study skin barrier function. Exp Dermatol 27:501–511

    Article  Google Scholar 

  • Nodake Y, Matsumoto S, Miura R et al (2015) Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe – a blinded randomized clinical trial. J Dermatol Sci 79:119–126

    Article  Google Scholar 

  • Nolte SV, Xu W, Rennekampff HO et al (2008) Diversity of fibroblasts – a review on implications for skin tissue engineering. Cells Tissues Organs 187:165–176

    Article  Google Scholar 

  • Nørreslet LB, Agner T, Clausen M-L (2020) The skin microbiome in inflammatory skin diseases. Curr Dermatol Rep 9:141–151

    Article  Google Scholar 

  • OECD (2004a) Guidance Document for the Conduct of Skin Absorption Studies, OECD Series on Testing and Assessment, Number 28. ENV/JM/MONO(2004)2. https://www.oecd-ilibrary.org/content/publication/9789264078796-en. https://doi.org/10.1787/9789264078796-en. Accessed 05 Mar 2004

  • OECD (2004b) Test No. 428: Skin absorption: in vitro method. https://read.oecd-ilibrary.org/environment/test-no-428-skin-absorption-in-vitro-method_9789264071087-en#page1. https://doi.org/10.1787/9789264071087-en. Accessed 13 Apr 2004

  • OECD (2011) Guidance notes on dermal absorption, Series on Testing and Assessment No. 156. https://www.oecd.org/chemicalsafety/testing/48532204.pdf. Accessed 18 Aug 2011

  • OECD (2022) Guidance notes on dermal absorption studies for pesticides and biocides (Draft Second Edition), Series on Testing and Assessment No. 156, Jan 2022. https://www.oecd.org/env/ehs/testing/draft-updated-guidance-notes-156-dermal-absorption-studies-pesticides-biocides.pdf. Accessed Jan 2022

  • Oh JS, Jang HH (2015) Epidermal differentiation and skin barrier. Kor J Aesthet Cosmetol 13:713–720

    Google Scholar 

  • Parisi R, Iskandar IYK, Kontopantelis E et al (2020) National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ 369:m1590

    Article  Google Scholar 

  • Pede D, Serra G, De Rossi D (1998) Microfabrication of conducting polymer devices by ink-jet stereolithography. Mater Sci Eng C 5:289–291. https://doi.org/10.1016/S0928-4931(97)00056-8

    Article  Google Scholar 

  • Prost-Squarcioni C, Fraitag S, Heller M et al (2008) [Functional histology of dermis] Ann Dermatol Venereol 135:1s5-120

    Google Scholar 

  • Puebla-Barragan S, Reid G (2021) Probiotics in cosmetic and personal care products: trends and challenges. Molecules 26:1249

    Article  CAS  Google Scholar 

  • Puennel L, Lunter D (2021) Film-forming systems for dermal drug delivery. Pharmaceutics 13:932

    Article  CAS  Google Scholar 

  • Reilly DM, Lozano J (2021) Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesth Res 8:2

    Article  Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  Google Scholar 

  • Roy S (1999) Preformulation aspects of transdermal drug delivery systems. Transdermal and topical drug delivery systems. Interpharm Press Inc., Hauppauge

    Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique

    Google Scholar 

  • Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126:2–7. https://doi.org/10.1111/j.1365-2133.1992.tb00001.x

    Article  Google Scholar 

  • Sadick N, Edison BL, John G et al (2019) An advanced, physician-strength retinol peel improves signs of aging and acne across a range of skin types including melasma and skin of color. J Drugs Dermatol 18:918–923

    CAS  Google Scholar 

  • Sano S (2015) Psoriasis as a barrier disease. Dermatol Sin 33:64–69. https://doi.org/10.1016/j.dsi.2015.04.010

    Article  Google Scholar 

  • SCCS (2021) The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 11th revision, 30–31 Mar 2021, SCCS/1628/21. Regul Toxicol Pharmacol 127:105052

    Article  Google Scholar 

  • Scheuplein RJ (1967) Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88

    Article  CAS  Google Scholar 

  • Schmid-Wendtner MH, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19:296–302

    Article  Google Scholar 

  • Seite S, Bieber T (2015) Barrier function and microbiotic dysbiosis in atopic dermatitis. Clin Cosmet Investig Dermatol 8:479–483

    Article  CAS  Google Scholar 

  • Selby P, McGarrigle HH, Peacock M (1989) Comparison of the effects of oral and transdermal oestradiol administration on oestrogen metabolism, protein synthesis, gonadotrophin release, bone turnover and climacteric symptoms in postmenopausal women. Clin Endocrinol 30:241–249

    Article  CAS  Google Scholar 

  • Sharma N, Parashar B, Sharma S et al (2012) Blooming pharma industry with transdermal drug delivery system. Indo Global J Pharm Sci 2:262–278

    Article  CAS  Google Scholar 

  • Shin SH, Thomas S, Raney SG et al (2018) In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release 270:76–88

    Article  CAS  Google Scholar 

  • Sowada J, Lemoine L, Schön K et al (2017) Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin. Arch Toxicol 91:2331–2341

    Article  CAS  Google Scholar 

  • Sultana R, McBain AJ, O'Neill CA (2013) Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol 79:4887–4894

    Article  CAS  Google Scholar 

  • Tett A, Pasolli E, Farina S et al (2017) Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiom 3:14

    Article  Google Scholar 

  • Thomas JR, Dixon TK, Bhattacharyya TK (2013) Effects of topicals on the aging skin process. Facial Plast Surg Clin North Am 21:55–60. https://doi.org/10.1016/j.fsc.2012.11.009

    Article  Google Scholar 

  • Timm CM, Loomis K, Stone W et al (2020) Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome 8:58

    Article  CAS  Google Scholar 

  • Traisaeng S, Herr DR, Kao H-J et al (2019) A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins 11:311

    Article  CAS  Google Scholar 

  • Tran TTD, Tran PHL (2019) Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharmaceutics 11. https://doi.org/10.3390/pharmaceutics11060290

  • Uberoi A, Bartow-McKenney C, Zheng Q et al (2021) Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29:1235–1248.e1238

    Article  CAS  Google Scholar 

  • van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 161:645–655. https://doi.org/10.1016/j.jconrel.2012.01.042

    Article  CAS  Google Scholar 

  • Van Scott EJ, Ditre CM, Yu RJ (1996) Alpha-hydroxyacids in the treatment of signs of photoaging. Clin Dermatol 14:217–226. https://doi.org/10.1016/0738-081X(95)00157-B

    Article  Google Scholar 

  • Vanakoski J, Seppälä T, Sievi E et al (1996) Exposure to high ambient temperature increases absorption and plasma concentrations of transdermal nicotine. Clin Pharmacol Ther 60:308–315

    Article  CAS  Google Scholar 

  • Vandervoort J, Ludwig A (2008) Microneedles for transdermal drug delivery: a minireview. Front Biosci 13:1711–1715

    Article  CAS  Google Scholar 

  • Vijaya Chandra SH, Srinivas R, Dawson TL et al (2021) Cutaneous Malassezia: commensal, pathogen, or protector? Front Cell Infect Microbiol 10

    Google Scholar 

  • Wallen-Russell C (2019) The role of every-day cosmetics in altering the skin microbiome: a study using biodiversity. Cosmetics 6:2

    Article  CAS  Google Scholar 

  • Weidinger S, Rodriguez E, Ring J (2009) Filaggrin und Hautbarriere. Allergo J 18:600–609

    Article  Google Scholar 

  • WHO (2006) Dermal absorption. World Health Organization, Geneva

    Google Scholar 

  • Yaar M, Gilchrest BA (2007) Photoageing: mechanism, prevention and therapy. Br J Dermatol 157:874–887. https://doi.org/10.1111/j.1365-2133.2007.08108.x

    Article  CAS  Google Scholar 

  • Yannas IV (2015) Tissue and organ regeneration in adults, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Zheng Y, Hunt RL, Villaruz AE et al (2022) Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe 30:301–313.e309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korinna Wend .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wend, K., Lemoine, L., Pieper, C. (2023). Dermal Absorption: Considerations on Risk Assessment, Drug Administration, and the Human Skin Microbiome. In: Hock, F.J., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics