Skip to main content

Complications of Osseous Trauma

  • Living reference work entry
  • First Online:
Musculoskeletal Imaging

Abstract

There are many complications of skeletal trauma, although in most cases fracture healing is uncomplicated. Complications can result from direct trauma to bone and soft tissue or from the treatment of the fractures. Complications may be systemic or local and involve the bones or the adjacent soft tissues and joints. For initial diagnosis and follow-up examinations, radiographic examination is as important as the clinical examination and sometimes even more important. In this chapter, an overview is presented of the various complications in which radiology plays a role in evaluation and the imaging appearances of these complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Donaldson LJ, Cook A, Thomas RG. Incidence of fractures in a geographically defined population. J Epidemiol Community Health. 1990;44:241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brinker MR, O’Connor DP. The incidence of fractures and dislocations referred for orthopaedic services in a capitated population. J Bone Joint Surg Am. 2004;86:290–7.

    Article  PubMed  Google Scholar 

  3. Phieffer LA, Goulet JA. Delayed unions of the tibia. J Bone Joint Surg Am. 2006;88:205–16.

    Article  Google Scholar 

  4. Bühne K-H, Bohndorf K. Imaging of posttraumatic osteomyelitis. Semin Musculoskelet Radiol. 2004;8:199–204.

    Article  PubMed  Google Scholar 

  5. Kaim AH, Gross T, von Schulthess GK. Imaging of chronic posttraumatic osteomyelitis. Eur Radiol. 2000;12:1193–202.

    Article  Google Scholar 

  6. Holtom P, Smith AM. Introduction to adult posttraumatic osteomyelitis of the tibia. Clin Orthop. 1999;360:6–13.

    Article  Google Scholar 

  7. Mader JT, Cripps MW, Calhoun JH. Adult posttraumatic osteomyelitis of the tibia. Clin Orthop. 1999;360:14–21.

    Article  Google Scholar 

  8. Atwan Y, Schemitsch EH. Radiographic evaluations: which are most effective to follow fracture healing? Injury. 2020;51(Suppl 2):S18–22.

    Article  PubMed  Google Scholar 

  9. Keating JF, O’Brien PJ, Blachut PA, et al. Locking intramedullary nailing with and without reaming for open fractures of the tibial shaft. A prospective, randomized study. J Bone Joint Surg Am. 1997;79(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  10. Whelan DB, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32.

    PubMed  Google Scholar 

  11. Whelan DB, et al. Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation. J Bone Joint Surg Br. 2002;84(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  12. Oliver WM, et al. The radiographic union score for HUmeral fractures (RUSHU) predicts humeral shaft nonunion. Bone Joint J. 2019;101-B(10):1300–6.

    Article  PubMed  Google Scholar 

  13. Nicholson, et al. Fracture nonunion in long bones: a literature review of risk factors and surgical management. Injury. 2021;52(Suppl 2):S3–S11.

    Article  PubMed  Google Scholar 

  14. Ehara S. Complications of skeletal trauma. Radiol Clin N Am. 1997;35:767–81.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattarcharyya T, Bouchard KA, Phadke A, et al. The accuracy of computed tomography for the diagnosis of tibial non-union. J Bone Joint Surg Am. 2006;88:692–7.

    Google Scholar 

  16. Schindle MK, Foo LF, Kelly BT, et al. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am. 2006;88:27–46.

    Google Scholar 

  17. Kendell SD, Helms CA, Rampton JW, et al. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol. 2005;184:1486–9.

    Article  PubMed  Google Scholar 

  18. Langer JS, Gardner MJ, Ricci WM. The cortical step sign as a tool for assessing and correcting rotational deformity in femoral shaft fractures. J Orthop Trauma. 2010;24(2):82–8.

    Article  PubMed  Google Scholar 

  19. Jaarsma RL, Pakvis DF, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.

    Article  CAS  PubMed  Google Scholar 

  20. Vergano, et al. Rotational malalignment in femoral nailing: prevention, diagnosis and surgical correction. Acta Biomed. 2020;91(14-S):e2020003.

    Google Scholar 

  21. Lerch, et al. Prevalence of combined abnormalities of tibial and femoral torsion in patients with symptomatic hip dysplasia and femoroacetabular impingement. Bone Joint J. 2020;102-B(12):1636–45.

    Article  PubMed  Google Scholar 

  22. Mizuta T, Benson WM, Foster BK, et al. Statistical analysis of the incidence of physeal injuries. J Pediatr Orthop. 1987;7:518–23.

    Article  CAS  PubMed  Google Scholar 

  23. Ziebarth K, et al. High survivorship and little osteoarthritis at 10-year Followup in SCFE patients treated with a modified Dunn procedure. Clin Orthop Relat Res. 2017 Apr;475(4):1212–28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lerch, et al. Patients with severe slipped capital femoral epiphysis treated by the modified Dunn procedure have low rates of avascular necrosis, good outcomes, and little osteoarthritis at long-term follow-up. Bone Joint J. 2019;101-B(4):403–14.

    Article  CAS  PubMed  Google Scholar 

  25. Craig JG, Cramer KE, Cody DD, et al. Premature partial closure and other deformities of the growth plate: MR imaging and three-dimensional modeling. Radiology. 1999;210:835–43.

    Article  CAS  PubMed  Google Scholar 

  26. Ecklund K, Jaramillo D. Patterns of premature physeal arrest: MR imaging of 111 children. AJR Am J Roentgenol. 2002;178:967–72.

    Article  PubMed  Google Scholar 

  27. Sailhan F, Chotel F, Guibal AL, et al. Three-dimensional MR imaging in the assessment of physeal growth arrest. Eur Radiol. 2004;14:1600–8.

    Article  PubMed  Google Scholar 

  28. Gross T, Kaim AH, Regazzuoni P, et al. Current concepts in posttraumatic osteomyelitis: a diagnostic challenge with new imaging options. J Trauma Injury. 2002;52:1210–9.

    Article  Google Scholar 

  29. Ledermann HP, Bongartz G, Steinbrich W. Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol. 2000;10:1815–23.

    Article  CAS  PubMed  Google Scholar 

  30. Llewellyn A, et al. Imaging tests for the detection of osteomyelitis: a systematic review. Health Technol Assess. 2019;23(61):1–128.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tumeh S, Aliabadi P, McNeil B. Disease activity in osteomyelitis: role of radiography. Radiology. 1987;165:781–4.

    Article  CAS  PubMed  Google Scholar 

  32. Guermazi A, Mohr A, Genant HK. Brodie abscess: another type of chronic posttraumatic osteomyelitis. Eur Radiol. 2003;13:1750–2.

    Article  PubMed  Google Scholar 

  33. Hopkins KL, Li KCP, Bergman G. Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes. Skelet Radiol. 1994;24:325–30.

    Google Scholar 

  34. Wing VW, Jeffrey RB, Federle MP, et al. Chronic osteomyelitis examined by CT. Radiology. 1985;154:171–4.

    Article  CAS  PubMed  Google Scholar 

  35. Mäurer J, Lehmann-Beckow D, Vosshenrich R, et al. Wertigkeit von Computertomographie und Kernspintomographie in der Diagnostik von Knochensequestern. Akt Radiol. 1992;2:345–9.

    Google Scholar 

  36. Grey AC, Davies AM, Mangam DC, et al. The “penumbra sign” on T1-weighted MR imaging in subacute osteomyelitis: frequency, cause and significance. Clin Radiol. 1998;53:587–92.

    Article  CAS  PubMed  Google Scholar 

  37. Davies AM, Grimer R. The penumbra sign in subacute osteomyelitis. Eur Radiol. 2005;15:1268–70.

    Article  CAS  PubMed  Google Scholar 

  38. McGuinness B, Wilson N, Doyle AJ. The penumbra sign on T1-weighted MRI for differentiating musculoskeletal infection from tumour. Skelet Radiol. 2007;36:417–21.

    Article  CAS  Google Scholar 

  39. Cardinal C, Bureau NJ, Aubin B, et al. Role of ultrasound in musculoskeletal infections. Radiol Clin N Am. 2001;39:191–201.

    Article  CAS  PubMed  Google Scholar 

  40. Bureau NJ, Chhem RK, Cardinal E. Musculoskeletal infections: US manifestations. Radiographics. 1999;19:1585–92.

    Article  CAS  PubMed  Google Scholar 

  41. Robiller FC, Stumpe KDM, Kossmann T, et al. Chronic osteomyelitis of the femur: value of PET imaging. Eur Radiol. 2000;10:855–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bogdan H, Cristescu V, Dragusanu M. Avascular necrosis of the femoral head. Maedica (Buchar). 2009;4:27.

    Google Scholar 

  43. Stark DD, Bradley WG. Magnetic resonance imaging. 3rd ed. St. Louis: Mosby; 1999.

    Google Scholar 

  44. Yoon B-H, et al. The 2019 revised version of association research circulation osseous staging system of osteonecrosis of the femoral head. J Arthroplast. 2020;35(4):933–40.

    Article  Google Scholar 

  45. Anderson SE, Steinbach LS, Tshering DW, et al. MR imaging of avascular nonunion before and after vascularized bone grafting. Skelet Radiol. 2005;34:314–20.

    Article  Google Scholar 

  46. Kassarajian A, Llopis E, Palmer WE. Distal clavicular osteolysis: MR evidence for subchondral fracture. Skelet Radiol. 2007;36:17–22.

    Article  Google Scholar 

  47. McDougali IR, Keeling CA. Complications of fractures and their healing. Semin Nucl Med. 1988;18:113–25.

    Article  Google Scholar 

  48. Greenspan A. Orthopedic imaging: a practical approach. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2004.

    Google Scholar 

  49. Deluca PA, Lindsey RW, Ruwe P. Refracture of bones of the forearm after the removal of compression plates. J Bone Joint Surg Am. 1988;70:1372–6.

    Article  CAS  PubMed  Google Scholar 

  50. Moore TE, King AR, Travis AC, et al. Posttraumatic cysts and cystlike lesions of bone. Skelet Radiol. 1989;18:93.

    Article  CAS  Google Scholar 

  51. Papadimitriou NG, Christophorides J, Beslikas TA, et al. Post-traumatic cystic lesion following fracture of the radius. Skelet Radiol. 2004;34:411–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lerch, T.D., Heverhagen, J., Tshering Vogel, D.W., Anderson, S.E. (2023). Complications of Osseous Trauma. In: Pope, T., Bloem, J.L., Morrison, W.B., Wilson, D.J., White, L. (eds) Musculoskeletal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-57376-8_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57376-8_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57376-8

  • Online ISBN: 978-3-030-57376-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics