Skip to main content

NDE for Electronic Packaging

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nondestructive Evaluation 4.0

Abstract

Electronics and microsystem technology products have become an indispensable part of our lives and largely have enabled technical progress and the development of industrial and media society. The advancing miniaturization and thus the development towards the nano-packaging has posed a particular challenge in recent years. It needs corresponding non-destructive evaluation methods with high resolution like X-ray Computed Tomography to evaluate these technologies and to bring them to production lines.

This chapter is intended to present the status of non-destructive testing methods for electronics packaging to users in research and production. The latest developments are also taken into account and the specifics of the electronics industry are discussed.

The most parts of this publication base on the authors chapters in [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AI:

artificial intelligence

AOI:

automated optical inspection

AXI:

automated X-ray inspection

BGA:

package type “ball grid array”

CCD:

charge-coupled device

CMOS:

complementary metal oxide semiconductor

CT:

computed tomography

DCB:

direct copper bonded

FET:

field-effect transistor

GPS:

global positioning system

GV:

grey value

IC:

integrated circuit

IGBT:

insulated-gate bipolar transistor

LGA:

package type “land grid array”

MELF:

package type for resistors “metal electrode leadless faces”

nc:

not connected

NDE:

non-destructive evaluation

NDT:

non-destructive testing

OVHM:

oblique views at highest magnification

PCB:

printed circuit board

Pixel:

picture element

QFN:

package type “quad flat no leads”

ROI:

region of interest

SAM:

scanning acoustic microscope

SEM:

scanning electron microscope

SiP:

package type “system-in-package”

SMD:

surface mounted device

SMT:

surface mounted technology

SO:

package type “small outline”

SPI:

solder paste inspection

THT:

through hole technology

TSV:

through silicon via

USB:

universal serial bus

Voxel:

volumetric picture element

WLAN:

wireless local area network

References

  1. Bauch J, Rosenkranz R. Physikalische Werkstoffdiagnostik. Berlin: Springer Vieweg. German; 2017.

    Book  Google Scholar 

  2. Oppermann M. Zerstörungsfreie Analyse- und Prüfverfahren zur Detektion von Fehlern und Ausfällen in elektronischen Baugruppen. Templin: Verlag Dr. Markus A. Detert. German; 2014.

    Google Scholar 

  3. Bell H., Grossmann G., Öttl H., Oppermann M. “Reflow Technologie – Grundlagen des Reflowlötens, Teil 5: Möglichkeiten und Grenzen der Analytik an Lötstellen” (German edition) and accordingly “Reflow technology – fundamentals of reflow soldering, part 5: solder joint analysis opportunities and limitations” (English edition). Blaubeuren: Rehm Thermal Systems GmbH; 2019.

    Google Scholar 

  4. Akademischer Verein Hütte e.V. HÜTTE - Das Ingenieurwissen. 34th ed. Berlin/Heidelberg: Springer; 2012. German

    Google Scholar 

  5. Schaulin M. Optische 3D-Inspektion von Bauelementen der Systemintegration. Templin: Verlag Dr. Markus A. Detert; 2007. German

    Google Scholar 

  6. Oppermann M, Zerna T. Contact thermography – a promising method for non-destructive testing of die solder and sinter interconnects. Vestfold (Norway): Proceedings of 8th Electronics System-Integration Technology Conference (ESTC), IEEE: 978–1–7281-6292-8; 2020.

    Book  Google Scholar 

  7. Infineon Technologies AG. “IGBT TRENCHSTOP™ IGBT4 Low Power Chip IGC189T120T8RL”.[online]. https://www.infineon.com/dgdl/Infineon-IGC189T120T8RL-DS-v02_00-EN.pdf?fileId=db3a3043382e83730138325a63254b42 (link valid on October 22, 2020).

  8. Wolter K, Bieberle M, Budzier H, Zerna T. Zerstörungsfreie Prüfung elektronischer Baugruppen mittels bildgebender Verfahren. Templin: Verlag Dr. Markus A. Detert; 2012. German

    Google Scholar 

  9. Günther H. Im Reiche Röntgens – Eine Einführung in die Röntgentechnik. Stuttgart: Kosmos - Gesellschaft der Naturfreunde, Franckh’sche Verlagshandlung; 1930. German

    Google Scholar 

  10. Ardenne M v. “Neue Widerstandsverstärker mit hohen Verstärkungsgraden”, Radiotechnische Monatsschrift, year VI, issue 12/1929. Wien: Radio Amateur; 1929. German

    Google Scholar 

  11. Maisl M., Schorr C., Porsch F., Haßler U.. Computerlaminographie, Grundlagen und technische Umsetzung, 2011, [online], http://www.ndt.net/article/ctc2010/papers/261.pdf (link valid on October 22nd, 2020). German.

  12. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, Band 69. 1917, Seiten 262–277. German.

    Google Scholar 

  13. Deans SR. The Radon transform and some of its applications. New York: John Wiley & Sons; 1983.

    Google Scholar 

  14. Hoxter EA, Schenz A. Röntgenaufnahmetechnik. 14th ed. Berlin/München: Siemens Aktiengesellschaft; 1991. German

    Google Scholar 

  15. Team of authors. Fehlermechanismen und Prüfverfahren miniaturisierter Lötverbindungen – Ergebnisbericht des BMBF-Verbundprojektes nanoPAL. Templin: Dr. Markus A. Detert; 2009. German

    Google Scholar 

  16. Kühnicke E. Elastische Wellen in geschichteten Festkörpersystemen: Modellierungen mit Hilfe von Integraltransformationsmethoden. Simulationsrechnungen für Ultraschallanwendungen. Bonn: TIMUG e.V; 2001. German

    Google Scholar 

  17. Krestel E. Bildgebende Systeme für die medizinische Diagnostik. 2nd ed. Berlin/München: Siemens Aktiengesellschaft; 1988. German

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oppermann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oppermann, M., Richter, J., Schambach, J., Meyendorf, N. (2022). NDE for Electronic Packaging. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-48200-8_46-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48200-8_46-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48200-8

  • Online ISBN: 978-3-030-48200-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    NDE for Electronic Packaging
    Published:
    13 November 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_46-2

  2. Original

    NDE for Electronics Packaging
    Published:
    31 August 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_46-1