Skip to main content

Nanomaterials in Soil Health Management and Crop Production: Potentials and Limitations

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 90 Accesses

Abstract

Nanotechnology is the potential tool for transforming agriculture and food production through efficient management of natural resources and other required inputs. Application of nanomaterials in agriculture provides unique opportunity for enhancing crop production and sustaining soil health. In plant nutrition system nanofertilizers play miracle role to overcome the problems of low nutrient use efficiency, residues of chemicals, and water pollution thus maintaining soil health. Use of nanofertilizers encourages plant growth and productivity and reduces the soil toxicity. Nanofertilizers also reduce the harmful effects of agrochemicals and the frequency of fertilizer application. The use of these nanofertilizers in nutrient management system will minimize the fertilizer use by improving the nutrient use efficiency. Although nanomaterials have been reported very well in terms of soil health and crop production, still some studies also found some ill effects of toxicity and their impact of these novel materials on environment. Translocation and biotransformation pathways, potential uptake of nonmaterials in soil-plant system, and the positive and negative effects have also been reported in different crops. In this chapter, advanced researches and potential applications of nanotechnology on soil health and nutrient management for crop production have been covered. This chapter provides a better understanding of the use of nanofertilizers in soil health management and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  2. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  3. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  4. Tarafdar JC, Adhikari T (2015) Chapter: nanotechnology in soil science. In: Rattan RK et al (eds) Soil science: an introduction. Indian Society of Soil Science, New Delhi, pp 775–807

    Google Scholar 

  5. Lee SH, Richards RJ (2004) Montserrat volcanic ash induces lymph node granuloma and delayed lung inflammation. Toxicology 195:155–165

    Article  CAS  Google Scholar 

  6. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  7. Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37:1131–1142

    Article  CAS  Google Scholar 

  8. Anonymous (2012) European commission recommendation on the definition of nanomaterial. http://oshaeuropaeu/en/news/eu-europeancommission-recommendation-on-the-definition-of-nanomaterial. February 28, 2012

    Google Scholar 

  9. Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    Article  CAS  Google Scholar 

  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor. Electrode Nat 238:37–38

    CAS  Google Scholar 

  11. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  12. Wani I, Khatoon A, Ganguly S, Ahmed A, Ganguli J, Ahmad AK (2010) Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull 45:1033–1038

    Article  CAS  Google Scholar 

  13. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  14. Slowing II, Vivero-Escoto JL, Wu C-W, VSY L (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  Google Scholar 

  15. Chinnamuthu CR, Boopati PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  16. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their role in sustainable agriculture.Int J Agric. Crop Sci 5:2229–2232

    Google Scholar 

  17. Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey, pp 415–473

    Google Scholar 

  18. Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies In: International conference on Nanoagri. Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  19. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Horowitz AR, Nauen R (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Google Scholar 

  20. Ditta A, Arshad M (2016) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5(2):209–229

    Article  CAS  Google Scholar 

  21. Rai V, Acharya S, Dey NJ (2012) Implications of nanobiosensors in agriculture. J Biomed Nanosci Nanotechnol 3(2A):315–324

    Google Scholar 

  22. Tarafdar JC, Agarwal A, Raliya R, Kumar P, Burman U, Kaul RK (2012) ZnO Nanoparticles Induced Synthesis of Polysaccharides and Phosphatases by Aspergillus Fungi. Advanced Science, Engineering and Medicine 4:1-5

    Google Scholar 

  23. Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow-or controlled-release fertilizer. Sci Agric Sin 39:1598–1604

    Google Scholar 

  24. Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. SILICON 5:199–204

    Article  CAS  Google Scholar 

  25. Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GHM (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  26. Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  27. Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. Micronutrients in Agriculture, Soil Science Society of America, Madison, 549–592

    Google Scholar 

  28. Peteu SF, OanceaF SOA (2010) Constantinescu F, Dinu S Responsive polymers for crop protection. Polymers 2:229–251

    Article  CAS  Google Scholar 

  29. Yadav GS, Kumar D, Shivay YS, Singh H (2010) Zincenriched urea improves grain yield and quality of aromatic rice. Better Crops 94(2):6–7

    Google Scholar 

  30. Millan G, Agosto F, Vazquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr 35:293–302

    Article  Google Scholar 

  31. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea- modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  32. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691

    Article  CAS  Google Scholar 

  33. Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorus nanoparticles from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  34. Raliya R (2012) Application of nanoparticles on plant system and associated rhizospheric microflora. PhD Thesis, Jai Narian Vyas University, Jodhpur, India, 199

    Google Scholar 

  35. Anjuman AR, Shurovi Z, Shah MIH (2017) Preparation, Characterization and Evaluation of Efficacy of Phosphorus and Potassium Incorporated Nano Fertilizer. Adv Nanopart 6:62–74

    Google Scholar 

  36. Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z, Wang Y (2005) Responses of peanut to nano-calcium carbonate. J Plant Nutr Fert (Chin) 11:385–389

    Google Scholar 

  37. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  38. Fageria NK (2009) Use of nutrients in crop plants. CRC Press, Boca Raton

    Google Scholar 

  39. Allen SE, Terman GL (1966) Response of maize and Sudan grass to Zinc in granular micronutrients. Trans Commun II and IV:255–266

    Google Scholar 

  40. Liscano JF, Wilson CE, Norman RJ Jr, Slaton NA (2000) Zinc availability to rice from seven granular fertilizers. AAES Res Bull 963:1–31

    Google Scholar 

  41. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  42. Pradhan S, Patra P, Das S, Chandra S, Mitra S, DeyKK AS, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata, a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  Google Scholar 

  43. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy Y, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  44. Pramod M, Dhoke SK, Khanna AS (2011) Effect of Nano-ZnO Particle Suspension on Growth of Mung (Vigna radiata) and Gram (Cicer arietinum) Seedlings Using Plant Agar Method. J Nanotechnol 2011. Article ID 696535, 7 page

    Google Scholar 

  45. Ramesha Raddy (2014) Efficacy of nano Zinc particle on growth and yield of crop plants. PhD Thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  46. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–616

    Article  CAS  Google Scholar 

  47. Lopez-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, PeraltaVidea JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  Google Scholar 

  48. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  Google Scholar 

  49. De la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage, root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Article  Google Scholar 

  50. Tarafdar JC, Xiang Y, Wang WN, Dong Q, Biswas P (2012) Nanoparticle synthesis characterization and application to solve some chronic agricultural problems. Appl Biol Res 14:138–144 

    Google Scholar 

  51. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo, differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  CAS  Google Scholar 

  52. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  53. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  Google Scholar 

  54. Sand LB, Mumpton FA (1978) Natural zeolites, occurrence, properties and use. Pergamon, New York

    Google Scholar 

  55. Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. In: Bish DL, Ming DW (eds) Natural zeolites, occurrence, properties, applications, vol 45. Mineralogical Society of America, Chantilly, pp 619–654

    Chapter  Google Scholar 

  56. Hershey DR, Paul JL, Carlson RM (1980) Evaluation of potassium enriched clinoptilolite as a potassium source for potting media. Hortic Sci 15:87–89

    CAS  Google Scholar 

  57. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton FL

    Google Scholar 

  58. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  Google Scholar 

  59. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisoactivase? Biometals 21:211–217

    Article  CAS  Google Scholar 

  60. Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE (2014) Interfacing carbon nanotubes (CNT) with plants, enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  61. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  Google Scholar 

  62. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  Google Scholar 

  63. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopamonnieri (Linn) Wettst plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  64. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  Google Scholar 

  65. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nano particles. Chemosphere 75:850–857

    Article  CAS  Google Scholar 

  66. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  67. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68

    Google Scholar 

  68. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11

    Article  Google Scholar 

  69. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill). Saudi J Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  70. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Article  Google Scholar 

  71. Lin H-W, Hwu W-H, Ger M-D (2008) The dispersion of silver nanoparticles with physical dispersal procedures. J Mater Process Technol 206:56–61

    Article  CAS  Google Scholar 

  72. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  Google Scholar 

  73. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  74. Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4:8–10

    Article  CAS  Google Scholar 

  75. Fang J, X-q S, Wen B, Lin J-m, Owens G (2009) Stability of Titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  Google Scholar 

  76. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  Google Scholar 

  77. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  78. Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  Google Scholar 

  79. Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CO2 nanoparticles in soils. Environ Sci Technol 45:2777–2782

    Article  CAS  Google Scholar 

  80. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 andTiO2 7to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, P., Singh, A.P. (2021). Nanomaterials in Soil Health Management and Crop Production: Potentials and Limitations. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics