Skip to main content
Log in

Silicon Availability Affects the Stoichiometry and Content of Calcium and Micro Nutrients in the Leaves of Common Reed

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

Although silicon is not an essential element in sensu stricto for plant growth, it affects plant stress resistance and may affect the composition of cell wall compounds, especially of grasses. Where silicon availability alters the stoichiometry of macro nutrients in grasses, data on the interaction with calcium and micro nutrients are rare and hence are focussed on in this study.

Methods

The effect of silicon availability on calcium and micro nutrient content of the leaf blades of common reed, Phragmites australis, were assessed in a pot experiment with three levels of silicon supply.

Results

Calcium and micro nutrient concentrations and stoichiometry in leaf blades is altered by changing silicon availability during plant growth. In addition, Scanning Electron Microscopy (SEM) reveals that elevated silicon supply promotes silica deposition and changes the element content of micro and macro nutrients in the near epidermis tissue of P. australis leaves.

Conclusion

Silicon availability has a major impact on calcium and micro nutrient content and stoichiometry in grasses. This in turn may considerably affect the nutrient cycling in grass dominated ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaller J, Brackhage C, Gessner MO, Bäuker E, Dudel EG (2012) Plant Biol 14:392–396

    Article  CAS  Google Scholar 

  2. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) New Phytol 186(2):385–391

    Article  CAS  Google Scholar 

  3. Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Aquat Bot 87(2):134–140

    Article  CAS  Google Scholar 

  4. Schaller J, Brackhage C, Paasch S, Brunner E, Bäucker E, Dudel EG (2013) Sci Total Environ 442:6–9

    Article  CAS  Google Scholar 

  5. Cornelis JT, Delvaux B, Cardinal D, Andre L, Ranger J, Opfergelt S (2010) Geochim Cosmochim Acta 74(14):3913–3924

    Article  CAS  Google Scholar 

  6. Melzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Biogeochemistry 97(2–3):263–278

    Article  CAS  Google Scholar 

  7. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) J Plant Nutr 31(2):355–365

    Article  CAS  Google Scholar 

  8. Fawe A, Abou-Zaid M, Menzies JG, Belanger RR (1998) Phytopathology 88(5):396–401

    Article  CAS  Google Scholar 

  9. Ma JF (2004) Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  10. Sangster AG (1970) Ann Bot 34(1):245–257

    CAS  Google Scholar 

  11. Epstein E (1999) Annu Rev Plant Physiol Plant Molec Biol 50:641–664

    Article  CAS  Google Scholar 

  12. Borrelli N, Fernández HM, Altamirano SM, Osterrieth M (2011) Aquat Bot 94(1):29–36

    Article  CAS  Google Scholar 

  13. White PJ (2001) J Exp Bot 52(358):891–899

    Article  CAS  Google Scholar 

  14. Bush DS (1995) Annu Rev Plant Physiol Plant Molec Biol 46:95–122

    Article  CAS  Google Scholar 

  15. Ma JF, Takahashi E (1993) Plant Soil 148(1):107–113

    Article  CAS  Google Scholar 

  16. Ma JF, Takahashi E (1990) Plant Soil 126(1):115–119

    Article  CAS  Google Scholar 

  17. Horiguchi T, Morita S (1987) J Plant Nutr 10(17):2299–2310

    Article  CAS  Google Scholar 

  18. Horiguchi T (1988) Soil Sci Plant Nutr 34(1):65–73

    Article  CAS  Google Scholar 

  19. Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Plant Soil 238(2):281–288

    Article  CAS  Google Scholar 

  20. Iwasaki K, Maier P, Fecht M, Horst WJ (2002) J Plant Physiol 159(2):167–173

    Article  CAS  Google Scholar 

  21. Williams DE, Vlamis J (1957) Plant Physiol 32(5):404–409

    Article  CAS  Google Scholar 

  22. Shi QH, Bao ZY, Zhu ZJ, He Y, Qian QQ, Yu JQ (2005) Phytochemistry 66(13):1551–1559

    Article  CAS  Google Scholar 

  23. Kamenidou S, Cavins TJ, Marek S (2010) Sci Hortic 123(3):390–394

    Article  CAS  Google Scholar 

  24. Li J, Leisner SM, Frantz J (2008) J Am Soc Hortic Sci 133(5):670–677

    Google Scholar 

  25. Kaya C, Tuna AL, Sonmez O, Ince F, Higgs D (2009) J Plant Nutr 32(10):1788–1798

    Article  CAS  Google Scholar 

  26. Struyf E, Kotowski W, Jacobs S, Van Damme S, Bal K, Opdekamp W, Backx H, Van Pelt D, Meire P (2011) Hydrobiologia 674(1):41–50

    Article  CAS  Google Scholar 

  27. Struyf E, Smis A, Van Damme S, Garnier J, Govers G , Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Nat Commun1

  28. Güsewell S, Freeman C (2005) Funct Ecol 19(4):582–593

    Article  Google Scholar 

  29. (2002) DIN-EN-13805 Deutsches Institut für Normung. Berlin, pp 11

  30. (2004) DIN-EN-ISO-17294-2 Deutsches Institut für Normung: Berlin, pp 24

  31. Zimmermann F, Opfermann M, Bäucker E, Fiebig J, Nebe W (2000) Forstwiss Cent bl 119(4):193–207

    Article  CAS  Google Scholar 

  32. Loneraga J, Snowball K (1969) Aust J Agric Res 20(3):465–472

    Article  Google Scholar 

  33. Loneraga J, Snowball K, Simmons WJ (1968) Aust J Agric Res 19(6):845–852

    Article  Google Scholar 

  34. Bussler W (1963) Zeitschrift für Pflanzenernährung, Düngung Bodenkunde 100(1):53–58

    Article  CAS  Google Scholar 

  35. Marschner H (2003) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  36. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Plant Mol Biol 47(1–2):9–27

    Article  CAS  Google Scholar 

  37. Webb MA (1999) Plant Cell 11(4):751–761

    CAS  Google Scholar 

  38. Wissemeier AH, Horst WJ (1992) Plant Soil 143(2):299–309

    Article  CAS  Google Scholar 

  39. Pittman JK (2005) New Phytol 167(3):733–742

    Article  CAS  Google Scholar 

  40. Okuda A, Takahashi E (1962) Japan J Soil Sci Plant Nutr 33:1–8

    CAS  Google Scholar 

  41. Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P (1999) J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 162(3):263–274

    Article  CAS  Google Scholar 

  42. Li P, Song AL, Li ZJ, Fan FL, Liang YC (2012) Plant Soil 354(1–2):407–419

    Article  CAS  Google Scholar 

  43. Führs H, Gotze S, Specht A, Erban A, Gallien S, Heintz D, Van Dorsselaer A, Kopka J, Braun HP, Horst WJ (2009) J Exp Bot 60(6):1663–1678

    Article  Google Scholar 

  44. Fox TC, Guerinot ML (1998) Annu Rev Plant Physiol Plant Molec Biol 49:669–696

    Article  CAS  Google Scholar 

  45. Palmer CM, Guerinot ML (2009) Nat Chem Biol 5(5):333–340

    Article  CAS  Google Scholar 

  46. Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. In: Annual review of plant biology vol. 59. Annual Reviews, Palo Alto, pp 709–733.

  47. Schaller J, Brackhage C, Dudel E (2012) Environ Exp Bot 77(3):283–287

    Article  CAS  Google Scholar 

  48. Torre M, Rodriguez AR, Sauracalixto F (1992) J Agric Food Chem 40(10):1762–1766

    Article  CAS  Google Scholar 

  49. Liang YC, Sun WC, Zhu YG, Christie P (2007) Environ Pollut 147(2):422–428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schaller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackhage, C., Schaller, J., Bäucker, E. et al. Silicon Availability Affects the Stoichiometry and Content of Calcium and Micro Nutrients in the Leaves of Common Reed. Silicon 5, 199–204 (2013). https://doi.org/10.1007/s12633-013-9145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-013-9145-3

Keywords

Navigation