Skip to main content

Graphene-Based Nanocomposites for Renewable Energy Application

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Renewable solar cell energy is a key target for the development of sustainable energy that is inexhaustible and nonpolluting for our energy systems. To bring more solar-related technologies to the point of commercial readiness and viability in terms of performance and cost, substantial research on the development of highly efficient renewable solar cell energy systems is needed. Recent studies have indicated that graphene is a relatively novel material with unique properties that could be applied in photoanode and counter electrode components as an efficient electrode. In fact, the atom-thick 2D structure of graphene provides extraordinarily high conductivity, repeatability, and productivity, and prolongs the lifetime of related solar cell applications. Ongoing efforts have been exerted to further improve the graphene textural and electronic properties by loading an optimum content of metal oxide photocatalyst for high-efficiency renewable solar cell energy systems. In the field of photocatalysis today, metal oxide-based nanocomposites have emerged as efficient photocatalysts in renewable energy applications because of their unique characteristics, such as high stability against corrosion, nontoxicity, good photocatalytic properties, and ready availability. However, the high efficiency of graphene-based nanocomposites as photoanode/counter electrode requires a suitable architecture that minimizes electron loss at nanostructure connections and maximizes photon absorption. Notably, graphene-based nanocomposites of photoanode/counter electrode will benefit photon absorption, charge separation, and charge carrier transport. In this chapter, different strategies of synthesis and characterization analyses for graphene-based nanocomposites. as well as its prospects in solar cell-related applications, are reviewed in detail. Indeed, innovative new approaches and synthesis of high-quality graphene-based nanocomposites are crucial for determining the potential of the material for efficient photoanodes and counter electrodes in solar cell-related applications. This chapter also addresses the challenges and perspectives, in terms of efficiency breakthrough, and the current limitations of solar cell-related technology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acik M, Darling SB (2016) Graphene in perovskite solar cells: device design, characterization and implementation. J Mater Chem A 4(17):6185–6235

    Article  CAS  Google Scholar 

  • Ahlfeld CE et al (2017) Nuclear fission reactor fuel assembly adapted to permit expansion of the nuclear fuel contained therein. Google Patents

    Google Scholar 

  • Ahmad M, Zaidi S, Rahman S (2006) Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desalination 193(1–3):387–397

    Article  CAS  Google Scholar 

  • Aïssa B et al (2018) Graphene nanoplatelet doping of P3HT: PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance. Nanotechnology 29(10):105405

    Article  CAS  Google Scholar 

  • Al-Rawashdeh NA, Albiss BA, Mo’ath H (2018) Graphene-based transparent Electrodes for dye sensitized solar cells. In: IOP Conference series: materials science and engineering. IOP Publishing

    Google Scholar 

  • Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  • Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  • Bi Y et al (2018) Colloidal quantum dot tandem solar cells using chemical vapor deposited graphene as an atomically thin intermediate recombination layer. ACS Energy Lett 3(7):1753–1759

    Article  CAS  Google Scholar 

  • Biccari F et al (2017) Graphene-based electron transport layers in perovskite solar cells: a step-up for an efficient carrier collection. Adv Energy Mater 7(22):1701349

    Article  CAS  Google Scholar 

  • Bkakri R et al (2015) Effects of the graphene content on the conversion efficiency of P3HT: graphene based organic solar cells. J Phys Chem Solids 85:206–211

    Article  CAS  Google Scholar 

  • Boehlert GW, Gill AB (2010) Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography 23(2):68–81

    Article  Google Scholar 

  • Brøndsted P, Lilholt H, Lystrup A (2005) Composite materials for wind power turbine blades. Annu Rev Mater Res 35:505–538

    Article  CAS  Google Scholar 

  • Burton T et al (2011) Wind energy handbook. Wiley

    Google Scholar 

  • Chen X et al (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695

    Article  CAS  Google Scholar 

  • Chen J et al (2015) One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem 127(4):1226–1230

    Article  Google Scholar 

  • Choi W, Lee J-W (2016) Graphene: synthesis and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Choi H et al (2011) Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells 95(1):323–325

    Article  CAS  Google Scholar 

  • Choi JW et al (2018) Synthesis of pseudocapacitive porous metal oxide nanoclusters anchored on graphene for aqueous energy storage devices with high energy density and long cycling stability along with ultrafast charging capability. Adv Funct Mater 28(42):1803695

    Article  CAS  Google Scholar 

  • Ci S et al (2015) Graphene-based electrode materials for microbial fuel cells. Science China Mater 58(6):496–509

    Article  CAS  Google Scholar 

  • De Volder MF et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  CAS  Google Scholar 

  • Diao S et al (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366

    Article  CAS  Google Scholar 

  • Dutta M et al (2012) ZnO/graphene quantum dot solid-state solar cell. J Phys Chem C 116(38):20127–20131

    Article  CAS  Google Scholar 

  • Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    Article  CAS  Google Scholar 

  • Feng Y et al (2013) Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci Rep 3:3260

    Article  Google Scholar 

  • Hirsch A (2010) The era of carbon allotropes. Nat Mater 9(11):868

    Article  CAS  Google Scholar 

  • Huc V et al (2008) Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 19(45):455601

    Article  CAS  Google Scholar 

  • Hung K-H, Li Y-S, Wang H-W (2012) Dye-sensitized solar cells using graphene-based counter electrode. In: Nanotechnology (IEEE-NANO), 2012: 12th IEEE conference. IEEE

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  • Isaacs-Sodeye AI (2012) Graphene-based solar cell. Google Patents

    Google Scholar 

  • Jana A, Scheer E, Polarz S (2017) Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J Nanotechnol 8(1):688–714

    Article  CAS  Google Scholar 

  • Jung S et al (2017) Improved interface control for high-performance graphene-based organic solar cells. 2D Materials 4(4):045004

    Article  CAS  Google Scholar 

  • Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4(6):908–918

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Kazmi SA et al (2017) Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). J Alloys Compd 691:659–665

    Article  CAS  Google Scholar 

  • Khalifa A et al (2018) Electrical properties of graphene film for counter electrode in dye sensitized solar cells. In: AIP conference proceedings. AIP Publishing

    Google Scholar 

  • Ko K-W et al (2017) Efficiency enhancement of hole-conductor free perovskite solar cells. J Nanosci Nanotechnol 17(11):8067–8074

    Article  CAS  Google Scholar 

  • Lang F et al (2015) Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J Phys Chem Lett 6(14):2745–2750

    Article  CAS  Google Scholar 

  • Lee J-H et al (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181):286–289

    Article  CAS  Google Scholar 

  • Lenzmann F, Kroon J (2007) Recent advances in dye-sensitized solar cells. Adv OptoElectronics 2007:1

    Article  CAS  Google Scholar 

  • Li X et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10(11):4328–4334

    Article  CAS  Google Scholar 

  • Li P et al (2014) Graphene-based transparent electrodes for hybrid solar cells. Frontiers Mater 1:26

    Article  Google Scholar 

  • Lin X-F et al (2016) Graphene-based materials for polymer solar cells. Chin Chem Lett 27(8):1259–1270

    Article  CAS  Google Scholar 

  • Liu J et al (2012) Graphene-based materials for energy applications. MRS Bull 37(12):1265–1272

    Article  CAS  Google Scholar 

  • Liu Y et al (2013) Feasibility of lithium storage on graphene and its derivatives. J Phys Chem Lett 4(10):1737–1742

    Article  CAS  Google Scholar 

  • Loh KP et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015

    Article  CAS  Google Scholar 

  • Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    Article  CAS  Google Scholar 

  • Low FW, Lai CW, Hamid SBA (2017) Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram Int 43(1):625–633

    Article  CAS  Google Scholar 

  • Low FW et al (2018) Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Metals 37:1–10

    Article  CAS  Google Scholar 

  • Manahan S (2017) Environmental chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Manser JS, Christians JA, Kamat PV (2016) Intriguing optoelectronic properties of metal halide perovskites. Chem Rev 116(21):12956–13008

    Article  CAS  Google Scholar 

  • Matte HR, Subrahmanyam K, Rao C (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113(23):9982–9985

    Article  CAS  Google Scholar 

  • Matthews HD et al (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459(7248):829

    Article  CAS  Google Scholar 

  • McJeon H et al (2014) Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514(7523):482

    Article  CAS  Google Scholar 

  • Mehmood U et al (2018) Co-sensitization of graphene/TiO2 nanocomposite thin films with ruthenizer and metal free organic photosensitizers for improving the power conversion efficiency of dye-sensitized solar cells (DSSCs). Sol Energy 170:47–55

    Article  CAS  Google Scholar 

  • Miao X et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12(6):2745–2750

    Article  CAS  Google Scholar 

  • Mishnaevsky L et al (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285.

    Article  CAS  Google Scholar 

  • Morris EW (2016) Huntsman advanced materials and Haydale composite solutions deliver significant step change in the market for nanocomposites. Reinf Plast 60(4):214–217

    Article  Google Scholar 

  • Mousavi SZ, Nafisi S, Maibach HI (2017) Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine 13(3):1071–1087

    Article  CAS  Google Scholar 

  • Nair AK et al (2016) Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction. Sci Rep 6:37731

    Article  CAS  Google Scholar 

  • Neto AC et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  CAS  Google Scholar 

  • Nicolosi V et al (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419

    Article  CAS  Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737

    Article  Google Scholar 

  • Osawa E (1970) Super-aromatic compounds. Kagaku 25:854–863

    CAS  Google Scholar 

  • Ovid’Ko I (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34(1):1–11

    Google Scholar 

  • Park H et al (2014) Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett 14(9):5148–5154

    Article  CAS  Google Scholar 

  • Pujadó MP (2012) Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction. Springer Science & Business Media

    Google Scholar 

  • Ren W, Cheng H-M (2014) The global growth of graphene. Nat Nanotechnol 9(10):726

    Article  CAS  Google Scholar 

  • Ricciardulli AG et al (2017) Solution-processable high-quality graphene for organic solar cells. ACS Appl Mater Interfaces 9(30):25412–25417

    Article  CAS  Google Scholar 

  • Rui Y et al (2013) Facile synthesis of rutile TiO2 nanorod microspheres for enhancing light-harvesting of dye-sensitized solar cells. Cryst Eng Commun 15(8):1651–1656

    Article  CAS  Google Scholar 

  • Sanyal SK (2018) Sustainability and renewability of geothermal power capacity. In: Power stations using locally available energy sources: a volume in the encyclopedia of sustainability science and technology series, 2nd edn. Springer, New York, pp 47–60

    Chapter  Google Scholar 

  • Sharma R et al (2014) ZnO anchored graphene hydrophobic nanocomposite-based bulk heterojunction solar cells showing enhanced short-circuit current. J Mater Chem C 2(38):8142–8151

    Article  CAS  Google Scholar 

  • Sheberla D et al (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220

    Article  CAS  Google Scholar 

  • Shen J et al (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    Article  CAS  Google Scholar 

  • Shin DH et al (2018) Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes. ACS Appl Mater Interfaces 10(4):3596–3601

    Article  CAS  Google Scholar 

  • Singh E, Nalwa HS (2015) Stability of graphene-based heterojunction solar cells. RSC Adv 5(90):73575–73600

    Article  CAS  Google Scholar 

  • Sovacool BK, Bulan L (2012) Energy security and hydropower development in Malaysia: the drivers and challenges facing the Sarawak corridor of renewable energy (SCORE). Renew Energy 40(1):113–129

    Article  Google Scholar 

  • Sung H et al (2016) Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv Energy Mater 6(3):1501873

    Article  CAS  Google Scholar 

  • Takahashi K et al (2018) Titanium material or titanium alloy material having surface electrical conductivity, and fuel cell separator and fuel cell using the same. Google Patents

    Google Scholar 

  • Tian Y, Zhao C-Y (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  CAS  Google Scholar 

  • Tong SW et al (2011) Graphene intermediate layer in tandem organic photovoltaic cells. Adv Funct Mater 21(23):4430–4435

    Article  CAS  Google Scholar 

  • Vengadesh P et al (2018) Method of fabricating graphene-based/algal biofilm electrode for application in a biophotovoltaic device. Google Patents

    Google Scholar 

  • Vieira FM, Moura PS, de Almeida AT (2017) Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings. Renew Energy 103:308–320

    Article  Google Scholar 

  • Wang X et al (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47(16):2990–2992

    Article  CAS  Google Scholar 

  • Wang Y et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23(13):1514–1518

    Article  CAS  Google Scholar 

  • Wei L et al (2018) Effect of graphene/TiO2 composite layer on the performance of dye-sensitized solar cells. J Nanosci Nanotechnol 18(2):976–983

    Article  CAS  Google Scholar 

  • World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 – says UN. 2017

    Google Scholar 

  • Wu Y et al (2013) Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J Phys Chem C 117(23):11968–11976

    Article  CAS  Google Scholar 

  • Wu Z et al (2014) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18):10505–10510

    Article  CAS  Google Scholar 

  • Xie C et al (2013) Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. J Mater Chem A 1(30):8567–8574

    Article  CAS  Google Scholar 

  • Yan K et al (2015) High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. SMALL 11(19):2269–2274

    Article  CAS  Google Scholar 

  • Yang J et al (2017) Functionalized graphene enables highly efficient solar thermal steam generation. ACS Nano 11(6):5510–5518

    Article  CAS  Google Scholar 

  • Yang Y et al (2018) Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1):829–835

    Article  CAS  Google Scholar 

  • Yavari F et al (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2(10):2738–2743

    Article  CAS  Google Scholar 

  • Yeo J-S et al (2015) Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12:96–104

    Article  CAS  Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715

    Article  CAS  Google Scholar 

  • Yoon J et al (2017) Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci 10(1):337–345

    Article  CAS  Google Scholar 

  • You P et al (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27(24):3632–3638

    Article  CAS  Google Scholar 

  • Zabed H et al (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66:751–774

    Article  CAS  Google Scholar 

  • Zhang B (2010) Using graphene in coating materials to prevent UV degradation on advanced composite materials

    Google Scholar 

  • Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  • Zhang P et al (2017) Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5):5087–5093

    Article  CAS  Google Scholar 

  • Zhao X et al (2018) Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett 18(4):2442–2449

    Article  CAS  Google Scholar 

  • Zheng Y et al (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296

    Article  CAS  Google Scholar 

  • Zheng XT et al (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. SMALL 11(14):1620–1636

    Article  CAS  Google Scholar 

  • Zhou W et al (2015) N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem Mater 27(6):2026–2032

    Article  CAS  Google Scholar 

  • Zhu J et al (2017) Embedded Si/graphene composite fabricated by magnesium-thermal reduction as anode material for lithium-ion batteries. Nanoscale Res Lett 12(1):627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by BOLD2025 Initiative (RJ010289176) under Universiti Tenaga Nasional Sdn. Bhd., Malaysia, Universiti Malaya Research Grant (RP045B-17AET), and Universiti Malaya Research Fund Assistance (BKP) (BKP096-2016) from the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Wei Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Low, F.W., Lai, C.W., Tiong, S.K., Amin, N. (2019). Graphene-Based Nanocomposites for Renewable Energy Application. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics