Skip to main content

Gravimeters

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 53 Accesses

Synonyms

Gravity meters; Relative

Definition

An instrument which measures differences in gravity. Units: Practical units are mGal (10 −6 g) and μGal (10 −9 g). 1 Gal = 1 cm/s 2.

Introduction

The first relative gravity measurements were made in 1672 by the French astronomer, Richer, who noted a difference in the period of a pendulum when observed in Paris and close to the equator in Cayenne, South America. For the next two centuries, relative gravity measurements, mainly for scientific purposes, were made with pendulums. In 1893, Threlfall and Pollock made the first successful spring-mass gravimeter in Sydney, Australia (Threlfall and Pollock 1900) using the newly discovered quartz fibers. From the middle of the twentieth century up until the present nearly all relative gravity measurements have been made with instruments based on a mass suspended by a quartz or metal elastic system. Instruments in which the mass is levitated in the field of a superconducting magnet and instruments...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Agnew D, Berger J, Buland R, Farrell W, Gilbert JF (1976) International deployment of accelerometers: a network of very long period seismology. EOS Trans Am Geophys Union 57:181–188

    Article  Google Scholar 

  • Agnew D, Berger J, Buland R, Farrell W, Gilbert JF (1986) Project IDA: a decade in review. EOS Trans Am Geophys Union 67(10):203–212

    Article  Google Scholar 

  • Ander ME, Summers T, Gruchalla ME (1999) LaCoste and Romberg gravity meter: system analysis and instrumental errors. Geophysics 64:1708–1719

    Article  Google Scholar 

  • Argyle M, Ferguson S, Sander L, Sander S (2000) AIRGrav results: a comparison of airborne gravity data with GSC test site data. Lead Edge 19:1134–1138

    Article  Google Scholar 

  • Banka D, Crossley D (1999) Noise levels of superconducting gravimeters at seismic frequencies. Geophys J Int 139:87–97

    Article  Google Scholar 

  • Bell RE, Childers VA, Arko RA (1999) Airborne gravity and precise positioning forgeologic applications. J Geophys Res 104(B7):15281–15292

    Article  Google Scholar 

  • Block B, Moore RD (1966) Measurements in the earth mode frequency range by an electrostatic sensing and feedback gravimeter. J Geophys Res 71:4361–4375

    Article  Google Scholar 

  • Block B, Moore RD (1970) Tidal to seismic frequency investigations with a quartz accelerometer of new geometry. J Geophys Res 75:1493–1505

    Article  Google Scholar 

  • Bonvalot S, Diament M, Gabalda G (1998) Continuous gravity recording with Scintrex CG-3 M meters: a promising tool for monitoring active zones. Geophys J Int 135:470–494

    Article  Google Scholar 

  • Brady JL, Hare JL, Ferguson JF, Seibert JE, Klopping FJ, Chen T, Niebauer T (2008) Results of the world’s first 4D microgravity surveillance of a waterflood–Prudhoe Bay, Alaska. SPE Reserv Eval Eng 11(5):824–831

    Article  Google Scholar 

  • Canadian Micro Gravity (2019). http://www.canadianmicrogravity.com/. Accessed June 2019

  • Carbone D, Rymer H (1999) Calibration shifts in a LaCoste-and-Romberg gravimeter: comparison with a Scintrex CG-3 M. Geophys Prospect 47(1):73–83

    Article  Google Scholar 

  • Crossley D et al (1999) Network of superconducting gravimeters benefits a number of disciplines. Eos Trans AGU 80(11):121

    Article  Google Scholar 

  • Crossley D, Hinderer J, Llubes M, Florsch N (2003) Potential of ground gravity measurements to validate GRACE data. Adv Geosci 1:65–71

    Article  Google Scholar 

  • Crossley D, Hinderer J, Riccardi U (2013) The measurement of surface gravity. Rep Prog Phys 76(4):046101

    Article  Google Scholar 

  • Dehlinger P (1978) Marine gravity. Elsevier, Amsterdam

    Google Scholar 

  • Foote SA, Grindeland DB (1992) Model QA3000 Q-flex accelerometer high performance test results. IEEE Aerosp Electron Syst Mag 7(6):59–67

    Article  Google Scholar 

  • Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70(11):4131–4152

    Article  Google Scholar 

  • Hamilton AC, Brule BG (1967) Vibration-induced drift in LaCoste and ROmberg geodetic gravimeters. J Geophys Res 72(8):2187–2197

    Article  Google Scholar 

  • Hugill AL (1984) The Design of a Gravimeter with Automatic Readout. Ph.D thesis. Bedford Park, South Australia, Flinders University

    Google Scholar 

  • Hugill A (1990) Scintrex CG-3 automated gravity meter: description and field results. SEG Expan Abstr Soc Explor Geophys 9:601–604

    Google Scholar 

  • Ingate S, Berger J (2004) Prospects for low-frequency seismometry. IRIS Broadband Seismometer Workshop, Granlibakken

    Google Scholar 

  • LaCoste LJB (1934) A new type long period vertical seismograph. Physics 5(7):178–180

    Article  Google Scholar 

  • LaCoste LJB, Romberg A (1945) US Patent 2377889

    Google Scholar 

  • LaFehr TR, Valliant HD, MacQueen HD (1992) High-resolution marine gravity by digital control. SEG Expan Abstr Soc Explor Geophys 11:559–560

    Google Scholar 

  • Laswell S, Niebauer TM, Engel R., Cassidy J, Courtier N, Henton J (2010) Recent observations of increased seismic background noise using gPhone gravity meters Micro-g LaCoste 2010. http://www.microglacoste.com/gPhoneNoise/gPhoneSeismicNoise.pdf

  • Mansinha L, Kamal (1992) A test of the superconducting gravimeter as a long-period seismometer. Phys Earth Planet Inter 71(1–2):52–60

    Google Scholar 

  • Melton BS (1976) The sensitivity and dynamic range of inertial seismographs. Rev Geophys Space Phys 18(2):93–116

    Article  Google Scholar 

  • Merlet S, Kopaev A, Diamen M, Geneves G, Landragin A, Pereira Dos Santos F (2008) Micro-gravity investigations for the LNE watt balance project. Metrologia 45(3):265–274

    Article  Google Scholar 

  • Meurers B (2018) Scintrex CG5 used for superconducting gravimeter calibration. Geodesy Geodyn 9(3):197–203

    Article  Google Scholar 

  • Micro-g LaCoste (2019). http://www.microglacoste.com/. Accessed June 2019

  • NOAA Grav-D project (2017). https://www.ngs.noaa.gov/GRAV-D/data/NGS_GRAV-D_General_Airborne_Gravity_Data_User_Manual_v2.1.pdf. Accessed June 2019

  • Richter B, Wenzel H-G, Zürn W, Klopping F (1995) From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys Earth Planet Inter 91:131–148

    Article  Google Scholar 

  • Scintrex (2019). http://www.scintrexltd.com/. Accessed June 2019

  • Studinger M, Bell R, Frearson N (2008) Comparison of AIRGrav and GT-1A airborne gravimeters for research applications. Geophysics 73(6):151–161

    Article  Google Scholar 

  • Threlfall R, Pollock JA (1900) On a quartz thread gravity balance. Philos Trans R Soc Lond A 193:215–260

    Article  Google Scholar 

  • Torge W (1989) Gravimetry. de Gruyter, Berlin

    Google Scholar 

  • Van Camp M (1999) Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys Earth Planet Inter 116:81–92

    Article  Google Scholar 

  • Van Camp M, Francis O (2007) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geod 81:337–344

    Article  Google Scholar 

  • Van Camp M, Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time-variable gravity measurements. Rev Geophys 55:938–992. https://doi.org/10.1002/2017RG000566

    Article  Google Scholar 

  • van Kann F (2004) Requirements and general principles of airborne gravity gradiometers for mineral exploration. In: Lane RJL (ed) Airborne gravity 2004 – abstracts from the ASEG-PESA airborne gravity 2004 workshop, Geoscience Australia Record 2004/18, pp 1–5

    Google Scholar 

  • Webring MW, Kucks RP, Abraham JD (2004) Gravity study of the Guernsey landfill site, Guernsey, Wyoming. U. S. Geological Survey, Reston

    Google Scholar 

  • Wei M, Schwarz KP (1995) Analysis of GPS derived acceleration from airborne tests. In: Proceedings on the IAG symposium on Airborne Gravity Field Determination at the IUGG XXI General Assembly, 2–14 July 1995. University of Calgary, Department of Geomatics Engineering, Alberta, pp 175–188

    Google Scholar 

  • Williams S, MacQueen JD (2001) Development of a versatile, commercially proven, and cost-effective airborne gravity system. Lead Edge 20(6):651–654

    Article  Google Scholar 

  • Wilson CDV (1953) An analysis of the vibrations emitted by some man-made sources of microseisms. Proc R Soc London Ser A 217:188–202

    Article  Google Scholar 

  • ZLS (2019). http://zlscorp.com/. Accessed June 2019

  • Zumberge M, Alnes H, Eiken O, Sasagawa G, Stenvold T (2008) Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics 73(6):133–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hugill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hugill, A. (2019). Gravimeters. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics