Skip to main content
Log in

Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The instrumental drift of the superconducting gravimeter in Membach, Belgium, is estimated using 9 years of co-located and episodic absolute gravity measurements. We show that the best model of the long-term drift of the SG-C021 is an exponential. The thermal levelers used to compensate tilts are unlikely to induce the observed drift. Rather, the capacitance bridge, magnetic variations, gas adsorption on the levitating sphere, or helium gas pressure variations around it are most likely the possible combined causes of the observed instrumental drift. In practice, either linear or exponential drift models are equivalent as long as the record duration does not exceed 10 years. For longer records, this study demonstrates that an exponential models the drift better than a simple linear trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amalvict M, Hinderer J, Mäkinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353

    Article  Google Scholar 

  • Bower DR, Liard J, Crossley DJ, Bastien R (1991) Preliminary calibration and drift assessment of the superconducting gravimeter GWR12 through comparison with the absolute gravimeter JILA2. In: Poitevin C (ed) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 3. Luxembourg, pp 129–142

  • Crossley DC, Hinderer J, Boy J-P (2005) Time variation of the European gravity field from superconducting gravimeters. Geophys J Int 161:257–264

    Article  Google Scholar 

  • Francis O, Van Camp M, van Dam T, Warnant R, Hendrickx M (2004) Indication of the uplift of the Ardenne in long term gravity variations in Membach (Belgium). Geophys J Int 158(1):346–352

    Article  Google Scholar 

  • Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70(11):4131–4152

    Article  Google Scholar 

  • Goodkind JM, Young C, Richter B (1991) Comparison of two superconducting gravimeters and an absolute gravimeter at Richmond, Florida. In: Poitevin C (ed) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 3. Luxembourg, pp 91–98

  • Hammer Ø, Harper DAT, Ryan PD (2001). PAST: paleontological statistics software package for education and data Palaeontologia Electronica 4(1):9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Harnisch M, Harnisch G, Nowak I, Richter B, Wolf P (2000) The dual sphere superconducting gravimeter CD029 at Frankfurt a.M. and Wettzell. First results and calibration. In: Ducarme B, Barthélemy J (eds) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 3. Luxembourg, pp 39–56

  • Kroner C, Jahr Th, Jentzsch G (2004) Results from 44 months of observations with a superconducting gravimeter at Moxa/Germany. J Geodyn 38(3–5):263–280

    Article  Google Scholar 

  • Prothero WA, Goodkind JM (1968) A superconducting gravimeter. Rev Sci Instrum 39:1257

    Article  Google Scholar 

  • Richter B, Zerbini S, Matonti F, Simon D (2004) Long-term crustal deformation monitored by gravity and space techniques at Medicina, Italy and Wettzell, Germany. J Geodyn 38(3–5):292–292

    Google Scholar 

  • Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res 110:B05406. DOI 10.1029/2004JB003497

    Article  Google Scholar 

  • Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium and application to correct long periodic gravity variations. J Geophys Res 111. DOI 10.1029/2006JB004405

  • Virtanen H, Kääriäinen J (1997) The GWR T020 superconducting gravimeter 1994–1996 at the Metsähovi station, Finland. In: Reports of the Finnish Geodetic Institute, vol 97, p 4, Helsinki

  • Warburton RJ, Brinton EW (1995) Recent developments in GWR Instrument’s superconducting gravimeters, in Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 11, edited by C. Poitevin, Luxembourg, pp. 23–56

  • Williams SDP (2003) Offsets in global positioning system time series. J Geophys Res 108, B6, 2310. DOI 10.1029/2002JB 002156

  • Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichina F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192:267–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Van Camp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Camp, M., Francis, O. Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?. J Geod 81, 337–344 (2007). https://doi.org/10.1007/s00190-006-0110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0110-4

Keywords

Navigation