Skip to main content

Fibrin in Nerve Tissue Engineering

  • Living reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

This chapter will focus on the use of fibrin for peripheral nerve repair and regeneration. Important basic aspects of fibrinogen and fibrin will be summarized to elucidate the role of fibrin in physiologic processes such as hemostasis and wound healing. The pivotal role of fibrin in nerve regeneration will be discussed in the following section, as current approaches to enhance peripheral nerve regeneration are based on our momentary understanding of the physiological process of neuronal regeneration. The main focus of this work will be on the plethora of applications, which have been developed to take advantage of and modify fibrin’s intrinsic biological properties in peripheral nerve repair and regeneration. This chapter will shed light on its use as adhesive for the repair of severed nerves and to stabilize neurorrhaphy sites in order to protect sutured nerves. Nerve conduits made from fibrin will also be discussed, as well as the multitude of applications in which fibrin serves as a carrier for neurotrophic factors and other molecules to enhance nerve regeneration in vivo and in vitro. The following pages are thought to meet the needs and expectations of both clinicians, for example, plastic surgeons, orthopedic surgeons, and neurosurgeons, as well as of basic researchers, for example, biologists. Advantageous features of fibrin from a physician’s point of view will be highlighted in addition to chemical and molecular aspects which might be of special interest for basic researchers in the laboratory. In summary, we aim to give a comprehensive overview on fibrin and its application from “bench to bedside” in translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adel M et al (2017) Suture versus fibrin glue microneural anastomosis of the femoral nerve in Sprague Dewly rat model. A comparative experimental assessment of the clinical, histological and statistical features. Acta Chir Plast 59(2):65–71

    Google Scholar 

  • Aebischer P, Guenard V, Valentini RF (1990) The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels. Brain Res 531(1–2):211–218

    Article  Google Scholar 

  • Ahmad E et al (2015) Fibrin matrices: the versatile therapeutic delivery systems. Int J Biol Macromol 81:121–136

    Article  Google Scholar 

  • Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    Article  Google Scholar 

  • Akassoglou K, Strickland S (2002) Nervous system pathology: the fibrin perspective. Biol Chem 383(1):37–45

    Article  Google Scholar 

  • Akassoglou K et al (2002) Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33(6):861–875

    Article  Google Scholar 

  • Akassoglou K et al (2003) Fibrin is a regulator of Schwann cell migration after sciatic nerve injury in mice. Neurosci Lett 338(3):185–188

    Article  Google Scholar 

  • Aleman MM et al (2014) Fibrinogen and red blood cells in venous thrombosis. Thromb Res 133(Suppl 1):S38–S40

    Article  Google Scholar 

  • Alshehri OM et al (2015) Fibrin activates GPVI in human and mouse platelets. Blood 126(13):1601–1608

    Article  Google Scholar 

  • Altieri DC et al (1990) A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 265(21):12119–12122

    Article  Google Scholar 

  • Ariens RA et al (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100(3):743–754

    Article  Google Scholar 

  • Astrup T (1958) The haemostatic balance. Thromb Diath Haemorrh 2(3–4):347–357

    Google Scholar 

  • Attar BM et al (2012) Effectiveness of fibrin adhesive in facial nerve anastomosis in dogs compared with standard microsuturing technique. J Oral Maxillofac Surg 70(10):2427–2432

    Article  Google Scholar 

  • Bagoly Z et al (2012) Factor XIII, clot structure, thrombosis. Thromb Res 129(3):382–387

    Article  Google Scholar 

  • Barbizan R et al (2013) Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom. PLoS One 8(5):e63260

    Article  Google Scholar 

  • Barnes JM, Przybyla L, Weaver VM (2017) Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 130(1):71–82

    Article  Google Scholar 

  • Bayram B et al (2018) Effects of platelet-rich fibrin membrane on sciatic nerve regeneration. J Craniofac Surg 29(3):e239–e243

    Article  Google Scholar 

  • Becker CM, Gueuning CO, Graff GL (1984) Sutures of fibrin glue for divided rat nerves. Schwann cell and muscle metabolism. J Reconstr Microsurg 1(2):139–145

    Article  Google Scholar 

  • Belanger K et al (2016) Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol Biosci 16(4):472–481

    Article  Google Scholar 

  • Belkas JS, Shoichet MS, Midha R (2004) Peripheral nerve regeneration through guidance tubes. Neurol Res 26(2):151–160

    Article  Google Scholar 

  • Benkherourou M et al (2000) Quantification and macroscopic modeling of the nonlinear viscoelastic behavior of strained gels with varying fibrin concentrations. IEEE Trans Biomed Eng 47(11):1465–1475

    Article  Google Scholar 

  • Bennett JS (2005) Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115(12):3363–3369

    Article  Google Scholar 

  • Bensaid W et al (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14):2497–2502

    Article  Google Scholar 

  • Bento RF, Miniti A (1993) Anastomosis of the intratemporal facial nerve using fibrin tissue adhesive. Ear Nose Throat J 72(10):663

    Article  Google Scholar 

  • Bento AR et al (2017) Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling. J Tissue Eng Regen Med 11(12):3494–3507

    Article  Google Scholar 

  • Bergel S (1909) Ueber Wirkungen des Fibrins. Dtsch Med Wochenschr 35(15):663–665

    Article  Google Scholar 

  • Bergmeister KD et al (2020) Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity. PLoS One 15(4):e0229530

    Article  Google Scholar 

  • Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11:767–804

    Article  Google Scholar 

  • Bhandari PS (2013) Use of fibrin glue in the repair of brachial plexus and peripheral nerve injuries. Indian J Neurotrauma 10(1):30–32

    Article  Google Scholar 

  • Bhang SH et al (2007) Controlled release of nerve growth factor from fibrin gel. J Biomed Mater Res A 80(4):998–1002

    Article  Google Scholar 

  • Bhatnagar D et al (2017) Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. J Mater Sci Mater Med 28(5):79

    Article  Google Scholar 

  • Biscola NP et al (2017) Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 23:13

    Article  Google Scholar 

  • Blomback B, Hessel B, Hogg D (1976) Disulfide bridges in nh2 -terminal part of human fibrinogen. Thromb Res 8(5):639–658

    Article  Google Scholar 

  • Blomback B et al (1978) A two-step fibrinogen – fibrin transition in blood coagulation. Nature 275(5680):501–505

    Article  Google Scholar 

  • Blomback B et al (1994) Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation. Thromb Res 75(5):521–538

    Article  Google Scholar 

  • Bozorg Grayeli A et al (2005) Long-term functional outcome in facial nerve graft by fibrin glue in the temporal bone and cerebellopontine angle. Eur Arch Otorhinolaryngol 262(5):404–407

    Article  Google Scholar 

  • Breen A, O’Brien T, Pandit A (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15(2):201–214

    Article  Google Scholar 

  • Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514

    Article  Google Scholar 

  • Buchaim RL et al (2015) Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom. Injury 46(4):655–660

    Article  Google Scholar 

  • Burgess WH et al (1990) Possible dissociation of the heparin-binding and mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue. J Cell Biol 111(5 Pt 1):2129–2138

    Article  Google Scholar 

  • Carr ME Jr, Gabriel DA, McDonagh J (1986) Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J 239(3):513–516

    Article  Google Scholar 

  • Carriel V et al (2013) Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 10(2):026022

    Article  Google Scholar 

  • Cartarozzi LP et al (2015) Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Res Bull 112:14–24

    Article  Google Scholar 

  • Cesarman-Maus G, Hajjar KA (2005) Molecular mechanisms of fibrinolysis. Br J Haematol 129(3):307–321

    Article  Google Scholar 

  • Chandrababu K, Senan M, Krishnan LK (2020) Exploitation of fibrin-based signaling niche for deriving progenitors from human adipose-derived mesenchymal stem cells towards potential neural engineering applications. Sci Rep 10(1):7116

    Article  Google Scholar 

  • Chapin JC, Hajjar KA (2015) Fibrinolysis and the control of blood coagulation. Blood Rev 29(1):17–24

    Article  Google Scholar 

  • Charo IF, Bekeart LS, Phillips DR (1987) Platelet glycoprotein IIb-IIIa-like proteins mediate endothelial cell attachment to adhesive proteins and the extracellular matrix. J Biol Chem 262(21):9935–9938

    Article  Google Scholar 

  • Chato-Astrain J et al (2018) In vivo evaluation of nanostructured fibrin-agarose hydrogels with mesenchymal stem cells for peripheral nerve repair. Front Cell Neurosci 12:501

    Article  Google Scholar 

  • Cheresh DA et al (1989) Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 58(5):945–953

    Article  Google Scholar 

  • Chernysh IN, Nagaswami C, Weisel JW (2011) Visualization and identification of the structures formed during early stages of fibrin polymerization. Blood 117(17):4609–4614

    Article  Google Scholar 

  • Childe JR et al (2018) Fibrin glue increases the tensile strength of conduit-assisted primary digital nerve repair. Hand (NY) 13(1):45–49

    Article  Google Scholar 

  • Choi BH et al (2005) Autologous fibrin glue in peripheral nerve regeneration in vivo. Microsurgery 25(6):495–499

    Article  Google Scholar 

  • Choi KS et al (2014) Preservation of facial nerve function repaired by using fibrin glue-coated collagen fleece for a totally transected facial nerve during vestibular schwannoma surgery. J Korean Neurosurg Soc 55(4):208–211

    Article  Google Scholar 

  • Christman KL et al (2004) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10(3–4):403–409

    Article  Google Scholar 

  • Chung DW, Davie EW (1984) Gamma and gamma’ chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 23(18):4232–4236

    Article  Google Scholar 

  • Clark RA (2001) Fibrin and wound healing. Ann N Y Acad Sci 936:355–367

    Article  Google Scholar 

  • Clark RA et al (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 148(5):1407–1421

    Google Scholar 

  • Clemetson KJ (2012) Platelets and primary haemostasis. Thromb Res 129(3):220–224

    Article  Google Scholar 

  • Cohen C, Revel JP, Kucera J (1963) Paracrystalline forms of fibrinogen. Science 141(3579):436–438

    Article  Google Scholar 

  • Collet JP et al (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 20(5):1354–1361

    Article  Google Scholar 

  • Collet JP et al (2006) Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 26(11):2567–2573

    Article  Google Scholar 

  • Costa-Filho R et al (2016) Over 50 years of fibrinogen concentrate. Clin Appl Thromb Hemost 22(2):109–114

    Article  Google Scholar 

  • Cronje HT et al (2017) Candidate gene analysis of the fibrinogen phenotype reveals the importance of polygenic co-regulation. Matrix Biol 60–61:16–26

    Article  Google Scholar 

  • Cruz NI, Debs N, Fiol RE (1986) Evaluation of fibrin glue in rat sciatic nerve repairs. Plast Reconstr Surg 78(3):369–373

    Article  Google Scholar 

  • Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145(3638):1310–1312

    Article  Google Scholar 

  • Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30(43):10363–10370

    Article  Google Scholar 

  • Davis G, Curtin CM (2016) Management of Pain in complex nerve injuries. Hand Clin 32(2):257–262

    Article  Google Scholar 

  • Davis KD, Taylor KS, Anastakis DJ (2011) Nerve injury triggers changes in the brain. Neuroscientist 17(4):407–422

    Article  Google Scholar 

  • de la Puente P, Ludena D (2014) Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res 322(1):1–11

    Article  Google Scholar 

  • di Summa PG et al (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63(9):1544–1552

    Article  Google Scholar 

  • di Summa PG et al (2011) Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 181:278–291

    Article  Google Scholar 

  • Dohan DM et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e45–e50

    Article  Google Scholar 

  • Doolittle RF, Chen R, Lau F (1971) Hybrid fibrin: proof of the intermolecular nature of – crosslinking units. Biochem Biophys Res Commun 44(1):94–100

    Article  Google Scholar 

  • Doolittle RF, Spraggon G, Everse SJ (1997) Evolution of vertebrate fibrin formation and the process of its dissolution. Ciba Found Symp 212:4–17; discussion 17–23

    Google Scholar 

  • Draeger RW, Bynum DK Jr, Patterson JMM (2017) Simplified cable nerve grafting with nerve-cutting guides and fibrin glue. J Hand Microsurg 9(3):167–169

    Article  Google Scholar 

  • Dresdale A et al (1985) Preparation of fibrin glue from single-donor fresh-frozen plasma. Surgery 97(6):750–755

    Google Scholar 

  • Du J et al (2017) Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater 55:296–309

    Article  Google Scholar 

  • Dubey N, Letourneau PC, Tranquillo RT (2001) Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials 22(10):1065–1075

    Article  Google Scholar 

  • Duong H, Wu B, Tawil B (2009) Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A 15(7):1865–1876

    Article  Google Scholar 

  • Dvorak HF et al (1987) Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Investig 57(6):673–686

    Google Scholar 

  • Edgar JM, Robinson M, Willerth SM (2017) Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomater 51:237–245

    Article  Google Scholar 

  • Egloff DV, Narakas A (1983) Nerve anastomoses with human fibrin. Preliminary clinical report (56 cases). Ann Chir Main 2(2):101–115

    Article  Google Scholar 

  • Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  • Erfanian R et al (2014) Comparison of a new single-donor human fibrin adhesive with suture for posterior tibial nerve repair in rat: biomechanical resistance and functional analysis. Chin J Traumatol 17(3):146–152

    Google Scholar 

  • Espitia Jaimes C, Fish RJ, Neerman-Arbez M (2018) Local chromatin interactions contribute to expression of the fibrinogen gene cluster. J Thromb Haemost 16(10):2070–2082

    Article  Google Scholar 

  • Everse SJ et al (1998) Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry 37(24):8637–8642

    Article  Google Scholar 

  • Ewald SG, Beckmann-Fries V (2017) Rehabilitation following peripheral nerve injury. In: Haastert-Talini K, Assmus H, Antoniadis G (eds) Modern concepts of peripheral nerve repair. Springer International Publishing, Cham, pp 109–125

    Chapter  Google Scholar 

  • Farrag TY et al (2007) Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope 117(1):157–165

    Article  Google Scholar 

  • Fattahi T, Mohan M, Caldwell GT (2004) Clinical applications of fibrin sealants. J Oral Maxillofac Surg 62(2):218–224

    Article  Google Scholar 

  • Felix SP et al (2013) Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33(6):468–477

    Article  Google Scholar 

  • Fish RJ, Neerman-Arbez M (2012) Fibrinogen gene regulation. Thromb Haemost 108(3):419–426

    Google Scholar 

  • Fogelson AL, Keener JP (2010) Toward an understanding of fibrin branching structure. Phys Rev E Stat Nonlinear Soft Matter Phys 81(5 Pt 1):051922

    Article  MathSciNet  Google Scholar 

  • Forrester JM (1995) Malpighi’s De polypo cordis: an annotated translation. Med Hist 39(4):477–492

    Article  Google Scholar 

  • Forsgren M et al (1987) Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213(2):254–260

    Article  Google Scholar 

  • Foster CH et al (2019) Trends and cost-analysis of lower extremity nerve injury using the National Inpatient Sample. Neurosurgery 85(2):250–256

    Article  Google Scholar 

  • Fowler WE et al (1980) Electron microsocpy of plasmic fragments of human fibrinogen as related to trinodular structure of the intact molecule. J Clin Invest 66(1):50–56

    Article  Google Scholar 

  • Gaffney PJ et al (1988) Monoclonal antibodies to crosslinked fibrin degradation products (XL-FDP). II. Evaluation in a variety of clinical conditions. Br J Haematol 68(1):91–96

    Article  Google Scholar 

  • Gailani D, Renne T (2007) Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 27(12):2507–2513

    Article  Google Scholar 

  • Gailit J et al (1997) Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Exp Cell Res 232(1):118–126

    Article  Google Scholar 

  • Galla TJ et al (2004) Fibrin/Schwann cell matrix in poly-epsilon-caprolactone conduits enhances guided nerve regeneration. Int J Artif Organs 27(2):127–136

    Article  Google Scholar 

  • Gao C et al (2008) Siatic nerve regeneration in rats stimulated by fibrin glue containing nerve growth factor: an experimental study. Injury 39(12):1414–1420

    Article  Google Scholar 

  • Gestring GF, Lerner R (1983) Autologous fibrinogen for tissue-adhesion, hemostasis and embolization. Vasc Surg 17(5):294–304

    Article  Google Scholar 

  • Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153(3):665–676

    Article  Google Scholar 

  • Godal HC (1969) Delayed fibrin polymerization due to removal of calcium ions. Scand J Clin Lab Invest 24(1):29–33

    Article  Google Scholar 

  • Graeff H, Hafter R (1982) Detection and relevance of crosslinked fibrin derivatives in blood. Semin Thromb Hemost 8(1):57–68

    Article  Google Scholar 

  • Grainger DJ et al (1995) Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med 1(9):932–937

    Article  Google Scholar 

  • Greiling D, Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 110(Pt 7):861–870

    Article  Google Scholar 

  • Griffiths R, Horch K, Stensaas L (1990) A collagen and fibrin tube for nerve repair. Restor Neurol Neurosci 1(5):339–346

    Google Scholar 

  • Gurewich V et al (1984) Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J Clin Invest 73(6):1731–1739

    Article  Google Scholar 

  • Haase J et al (1986) Use of fibrin seal (Tisseel/Tissucol) in peripheral nerve surgery: an experimental rat model. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hantgan R et al (1980) Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb Haemost 44(3):119–124

    Article  Google Scholar 

  • Hardy JJ, Carrell NA, McDonagh J (1983) Calcium ion functions in fibrinogen conversion to fibrin. Ann N Y Acad Sci 408:279–287

    Article  Google Scholar 

  • Hartley H (1951) Origin of the word ‘protein’. Nature 168(4267):244–244

    Article  Google Scholar 

  • Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88(2):186–193

    Google Scholar 

  • Heher P et al (2015) A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater 24:251–265

    Article  Google Scholar 

  • Heher P et al (2018a) An overview of surgical sealant devices: current approaches and future trends. Expert Rev Med Devices 15(10):747–755

    Article  Google Scholar 

  • Heher P et al (2018b) Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 129:134–147

    Article  Google Scholar 

  • Hermans J, McDonagh J (1982) Fibrin: structure and interactions. Semin Thromb Hemost 8(1):11–24

    Article  Google Scholar 

  • Herter T, Anagnostopoulos-Schleep J, Bennefeld H (1989) [The effect of fibrin gluing and its important components on fibrosis of nerve anastomoses]. Unfallchirurgie. 15(5):221–229

    Google Scholar 

  • Hettasch JM, Bolyard MG, Lord ST (1992) The residues AGDV of recombinant gamma chains of human fibrinogen must be carboxy-terminal to support human platelet aggregation. Thromb Haemost 68(6):701–706

    Article  Google Scholar 

  • Hoeprich PD Jr, Doolittle RF (1983) Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallel orientation. Biochemistry 22(9):2049–2055

    Article  Google Scholar 

  • Hoffman-Kim D, Mitchel JA, Bellamkonda RV (2010) Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 12:203–231

    Article  Google Scholar 

  • Hoover-Plow J (2010) Does plasmin have anticoagulant activity? Vasc Health Risk Manag 6:199–205

    Article  Google Scholar 

  • Hoylaerts M et al (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257(6):2912–2919

    Article  Google Scholar 

  • Huckhagel T et al (2018a) Nerve injury in severe trauma with upper extremity involvement: evaluation of 49,382 patients from the TraumaRegister DGU(R) between 2002 and 2015. Scand J Trauma Resusc Emerg Med 26(1):76

    Article  Google Scholar 

  • Huckhagel T et al (2018b) Nerve trauma of the lower extremity: evaluation of 60,422 leg injured patients from the TraumaRegister DGU® between 2002 and 2015. Scand J Trauma Resusc Emerg Med 26(1):40–40

    Article  Google Scholar 

  • Isaacs JE et al (2008) Comparative analysis of biomechanical performance of available “nerve glues”. J Hand Surg Am 33(6):893–899

    Article  Google Scholar 

  • Iuan FC et al (1995) Reparation of peripheral nerves with fibrin glue prepared from snake venom. Preliminary results. Sao Paulo Med J 113(5):1000–1002

    Article  Google Scholar 

  • Jakob W, Zipper J, Jentzsch ED (1982) Is the formation of fibrin a necessary event for the initiation of angiogenic responses in the chick chorioallantoic membrane? Exp Pathol 21(4):251–262

    Article  Google Scholar 

  • Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10

    Article  Google Scholar 

  • Jansen JW et al (1987) Influence of factor XIIIa activity on human whole blood clot lysis in vitro. Thromb Haemost 57(2):171–175

    Article  Google Scholar 

  • Janus TJ et al (1983) Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen. Biochemistry 22(26):6269–6272

    Article  Google Scholar 

  • Jennewein C et al (2011) Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med 17(5–6):568–573

    Article  Google Scholar 

  • Jeon O et al (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105(3):249–259

    Article  MathSciNet  Google Scholar 

  • Jeon O et al (2008) Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun 369(2):774–780

    Article  Google Scholar 

  • Jin Y et al (1990) Comparative experimental study of nerve repairs by classical suture or biological adhesive. Neurochirurgie 36(6):378–382

    Google Scholar 

  • Johnson PJ et al (2010) Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant 19(1):89–101

    Article  Google Scholar 

  • Jou IM et al (1999) The influence of delay and the effect of fibrin sealant on the cut surface of the peripheral nerve. An experimental study in the rat. J Hand Surg Br 24(6):707–711

    Article  Google Scholar 

  • Jubran M, Widenfalk J (2003) Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol 181(2):204–212

    Article  Google Scholar 

  • Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  Google Scholar 

  • Kalafatis M et al (1997) The regulation of clotting factors. Crit Rev Eukaryot Gene Expr 7(3):241–280

    Article  Google Scholar 

  • Kalbermatten DF et al (2008) Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 61(6):669–675

    Article  Google Scholar 

  • Kalbermatten DF et al (2009) New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg 25(1):27–33

    Article  Google Scholar 

  • Kaplan HM, Mishra P, Kohn J (2015) The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 26(8):226

    Article  Google Scholar 

  • Karsy M et al (2019) Trends and cost analysis of upper extremity nerve injury using the national (Nationwide) inpatient sample. World Neurosurg 123:e488–e500

    Article  Google Scholar 

  • Kasai S et al (1985) Primary structure of single-chain pro-urokinase. J Biol Chem 260(22):12382–12389

    Article  Google Scholar 

  • Khalafallah A et al (2014) Evaluation of the innovance d-dimer assay for the diagnosis of disseminated intravascular coagulopathy in different clinical settings. Clin Appl Thromb Hemost 20(1):91–97

    Article  Google Scholar 

  • Khojasteh A et al (2016) The effect of a platelet-rich fibrin conduit on neurosensory recovery following inferior alveolar nerve lateralization: a preliminary clinical study. Int J Oral Maxillofac Surg 45(10):1303–1308

    Article  Google Scholar 

  • Kirschbaum NE, Budzynski AZ (1990) A unique proteolytic fragment of human fibrinogen containing the a alpha COOH-terminal domain of the native molecule. J Biol Chem 265(23):13669–13676

    Article  Google Scholar 

  • Knighton DR et al (1982) Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg 196(4):379–388

    Article  Google Scholar 

  • Knox CJ et al (2013) Facial nerve repair: fibrin adhesive coaptation versus epineurial suture repair in a rodent model. Laryngoscope 123(7):1618–1621

    Article  Google Scholar 

  • Koehn JA et al (1983) Sequence of plasmin proteolysis at the NH2-terminus of the b beta-chain of human fibrinogen. Anal Biochem 133(2):502–510

    Article  Google Scholar 

  • Koulaxouzidis G, Reim G, Witzel C (2015) Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model. Neural Regen Res 10(7):1166–1171

    Article  Google Scholar 

  • Kuderna H (1976) Clinical application of nerve-anastomoses adhesion using fibrinogen. Fortschr Kiefer Gesichtschir 21:135

    Google Scholar 

  • Landers ZA et al (2018) The psychological impact of adult traumatic brachial plexus injury. J Hand Surg Am 43(10):950.e1–950.e6

    Article  Google Scholar 

  • Lasne D, Jude B, Susen S (2006) From normal to pathological hemostasis. Can J Anaesth 53(6 Suppl):S2–S11

    Article  Google Scholar 

  • Laudano AP, Doolittle RF (1978) Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 75(7):3085–3089

    Article  Google Scholar 

  • Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939

    Article  Google Scholar 

  • Law RH et al (2012) The X-ray crystal structure of full-length human plasminogen. Cell Rep 1(3):185–190

    Article  Google Scholar 

  • Lawrence DA (1997) The serpin-proteinase complex revealed. Nat Struct Biol 4(5):339–341

    Article  Google Scholar 

  • Le Beau JM, Ellisman MH, Powell HC (1988) Ultrastructural and morphometric analysis of long-term peripheral nerve regeneration through silicone tubes. J Neurocytol 17(2):161–172

    Article  Google Scholar 

  • Lee AC et al (2003) Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 184(1):295–303

    Article  Google Scholar 

  • Lee JY et al (2014) Controlled release of nerve growth factor from heparin-conjugated fibrin gel within the nerve growth factor-delivering implant. J Korean Assoc Oral Maxillofac Surg 40(1):3–10

    Article  Google Scholar 

  • Leidy EM et al (1990) Enhanced thrombolysis by a factor XIIIa inhibitor in a rabbit model of femoral artery thrombosis. Thromb Res 59(1):15–26

    Article  Google Scholar 

  • Leite APS et al (2019) Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 50(4):834–847

    Article  Google Scholar 

  • Levy JH, Greenberg C (2013) Biology of factor XIII and clinical manifestations of factor XIII deficiency. Transfusion 53(5):1120–1131

    Article  Google Scholar 

  • Lewis SD et al (1985) Regulation of formation of factor XIIIa by its fibrin substrates. Biochemistry 24(24):6772–6777

    Article  Google Scholar 

  • Lichtenfels M et al (2013) Effect of platelet rich plasma and platelet rich fibrin on sciatic nerve regeneration in a rat model. Microsurgery 33(5):383–390

    Article  Google Scholar 

  • Lijnen HR et al (1986) Activation of plasminogen by pro-urokinase. I. Mechanism. J Biol Chem 261(3):1253–1258

    Article  Google Scholar 

  • Lin KL et al (2010) DuraSeal as a ligature in the anastomosis of rat sciatic nerve gap injury. J Surg Res 161(1):101–110

    Article  Google Scholar 

  • Litvinov RI et al (2005) Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood 106(9):2944–2951

    Article  Google Scholar 

  • Litvinov RI et al (2007) Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other. Biochemistry 46(31):9133–9142

    Article  Google Scholar 

  • Liu HM (1992) The role of extracellular matrix in peripheral nerve regeneration: a wound chamber study. Acta Neuropathol 83(5):469–474

    Article  Google Scholar 

  • Longo MV et al (2016) Comparisons of the results of peripheral nerve defect repair with fibrin conduit and autologous nerve graft: an experimental study in rats. Microsurgery 36(1):59–65

    Article  Google Scholar 

  • Longstaff C, Kolev K (2015) Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost 13(Suppl 1):S98–S105

    Article  Google Scholar 

  • Lorand L (2001) Factor XIII: structure, activation, and interactions with fibrinogen and fibrin. Ann N Y Acad Sci 936:291–311

    Article  Google Scholar 

  • Lorand L, Konishi K (1964) Activation of the fibrin stabilizing factor of plasma by thrombin. Arch Biochem Biophys 105:58–67

    Article  Google Scholar 

  • Lundborg G (1982a) [Regeneration after peripheral nerve injury – a biological and clinical problem]. Lakartidningen. 79(20):2013–2017

    Google Scholar 

  • Lundborg G (1982b) Regeneration of peripheral nerves – a biological and surgical problem. Scand J Plast Reconstr Surg Suppl 19:38–44

    Google Scholar 

  • Lundborg G et al (1982a) Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J Hand Surg Am 7(6):580–587

    Article  Google Scholar 

  • Lundborg G et al (1982b) In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol 41(4):412–422

    Article  Google Scholar 

  • Lundborg G et al (1982c) Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol 76(2):361–375

    Article  Google Scholar 

  • Lundborg G, Longo FM, Varon S (1982d) Nerve regeneration model and trophic factors in vivo. Brain Res 232(1):157–161

    Article  Google Scholar 

  • Ma S et al (2013) Sciatic nerve regeneration using a nerve growth factor-containing fibrin glue membrane. Neural Regen Res 8(36):3416–3422

    Google Scholar 

  • Macfarlane RG (1964) An enzyme Cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  Google Scholar 

  • Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27(8):1687–1693

    Article  Google Scholar 

  • Macrae FL et al (2018) A fibrin biofilm covers blood clots and protects from microbial invasion. J Clin Invest 128(8):3356–3368

    Article  Google Scholar 

  • Mafi P, Beikpour H (2006) Management and results of extensive volar wrist lacerations: “The Spaaghetti wrist” in 124 patients during a 5 years period in 15th khordad hospital tehran. Med J Islam Repub Iran 20(1):5–7

    Google Scholar 

  • Makogonenko E et al (2002) Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41(25):7907–7913

    Article  Google Scholar 

  • Maragh H et al (1990) Morphofunctional evaluation of fibrin glue versus microsuture nerve repairs. J Reconstr Microsurg 6(4):331–337

    Article  Google Scholar 

  • Marcol W et al (2005) Extracts obtained from predegenerated nerves improve functional recovery after sciatic nerve transection. Microsurgery 25(6):486–494

    Article  Google Scholar 

  • Marder VJ, Shulman NR, Carroll WR (1969) High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem 244(8):2111–2119

    Article  Google Scholar 

  • Marquardt LM, Sakiyama-Elbert SE (2013) Engineering peripheral nerve repair. Curr Opin Biotechnol 24(5):887–892

    Article  Google Scholar 

  • Martins RS et al (2005a) Overall assessment of regeneration in peripheral nerve lesion repair using fibrin glue, suture, or a combination of the 2 techniques in a rat model. Which is the ideal choice? Surg Neurol 64(Suppl 1):S1:10–S1:16; discussion S1:16

    Google Scholar 

  • Martins RS et al (2005b) Electrophysiologic assessment of regeneration in rat sciatic nerve repair using suture, fibrin glue or a combination of both techniques. Arq Neuropsiquiatr 63(3A):601–604

    Article  Google Scholar 

  • Masgutov R et al (2019) Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration. Front Med (Lausanne) 6:68

    Article  Google Scholar 

  • Matras H et al (1972) Suture-free interfascicular nerve transplantation in animal experiments. Wien Med Wochenschr 122(37):517–523

    Google Scholar 

  • Matricardi P et al (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65(9):1172–1187

    Article  Google Scholar 

  • Matsuka YV et al (1996) Factor XIIIa-catalyzed cross-linking of recombinant alpha C fragments of human fibrinogen. Biochemistry 35(18):5810–5816

    Article  Google Scholar 

  • Matsumoto K, Chikuba H (1966) Fibrin film as the covering material on the nerve anastomosis site. Shujutsu 20(12):1100–1104

    Google Scholar 

  • McGrath AM et al (2012) Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury. Neurosci Lett 516(2):171–176

    Article  Google Scholar 

  • McManus MC et al (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2(1):19–28

    Article  Google Scholar 

  • McManus MC et al (2007) Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 81(2):299–309

    Article  Google Scholar 

  • Meals CG, Chang J (2018) Ten tips to simplify the spaghetti wrist. Plast Reconstr Surg Glob Open 6(12):e1971

    Article  Google Scholar 

  • Medved L, Nieuwenhuizen W (2003) Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 89(3):409–419

    Article  Google Scholar 

  • Medved L et al (1990) Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers. J Mol Biol 216(3):503–509

    Article  Google Scholar 

  • Menorca RM, Fussell TS, Elfar JC (2013) Nerve physiology: mechanisms of injury and recovery. Hand Clin 29(3):317–330

    Article  Google Scholar 

  • Menovsky T, Bartels RH (1999) Stabilization and accurate trimming of nerve ends: practical use of fibrin glue: technical note. Neurosurgery 44(1):224–225; discussion 225–6

    Article  Google Scholar 

  • Metelka M, Skala E, Fuchsova M (1962) Glueing of served peripheral nerves with plasma coagulum. Rozhl Chir 41:802–809

    Google Scholar 

  • Michael P, Abbott W (1943) The use of human fibrinogen in reconstructive surgery. JAMA 123(5):279–279

    Article  Google Scholar 

  • Mihalyi E (1988) Clotting of bovine fibrinogen. Calcium binding to fibrin during clotting and its dependence on release of fibrinopeptide B. Biochemistry 27(3):967–976

    Article  Google Scholar 

  • Moaddel M et al (2000) Interactions of human fibrinogens with factor XIII: roles of calcium and the gamma’ peptide. Biochemistry 39(22):6698–6705

    Article  Google Scholar 

  • Mooney R, Tawil B, Mahoney M (2010) Specific fibrinogen and thrombin concentrations promote neuronal rather than glial growth when primary neural cells are seeded within plasma-derived fibrin gels. Tissue Eng Part A 16(5):1607–1619

    Article  Google Scholar 

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904

    Article  Google Scholar 

  • Mosesson MW et al (1972) Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem 247(16):5210–5219

    Article  Google Scholar 

  • Mosesson MW et al (1989) Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc Natl Acad Sci USA 86(4):1113–1117

    Article  Google Scholar 

  • Mosesson MW et al (1993) Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction. Blood 82(5):1517–1521

    Article  Google Scholar 

  • Mosesson MW et al (1995) The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys). J Clin Invest 96(2):1053–1058

    Article  Google Scholar 

  • Mosesson MW, Siebenlist KR, Meh DA (2001) The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 936:11–30

    Article  Google Scholar 

  • Moy OJ et al (1988) Fibrin seal adhesive versus nonabsorbable microsuture in peripheral nerve repair. J Hand Surg Am 13(2):273–278

    Article  Google Scholar 

  • Mozafari R et al (2018) Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. J Venom Anim Toxins Incl Trop Dis 24:11

    Article  Google Scholar 

  • Muller-Esterl W (1989) Kininogens, kinins and kinships. Thromb Haemost 61(1):2–6

    Article  Google Scholar 

  • Muszbek L et al (2011) Novel aspects of factor XIII deficiency. Curr Opin Hematol 18(5):366–372

    Article  Google Scholar 

  • Mutch NJ et al (2003) Thrombus lysis by uPA, scuPA and tPA is regulated by plasma TAFI. J Thromb Haemost 1(9):2000–2007

    Article  Google Scholar 

  • Myohanen H, Vaheri A (2004) Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 61(22):2840–2858

    Article  Google Scholar 

  • Nakayama K et al (2007a) Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. Artif Organs 31(7):500–508

    Article  Google Scholar 

  • Nakayama K et al (2007b) Regeneration of peripheral nerves by bioabsorbable polymer tubes with fibrin gel. J Nanosci Nanotechnol 7(3):730–733

    Article  Google Scholar 

  • Nesheim M (2003) Thrombin and fibrinolysis. Chest 124(3 Suppl):33S–39S

    Article  Google Scholar 

  • Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3):357–366

    Article  Google Scholar 

  • Nicoli Aldini N et al (1995) Fibrin sealant conduits in peripheral nerve repair. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Nishimura MT et al (2008) Mechanical resistance of peripheral nerve repair with biological glue and with conventional suture at different postoperative times. J Reconstr Microsurg 24(5):327–332

    Article  Google Scholar 

  • Noble J et al (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45(1):116–122

    Article  Google Scholar 

  • Noori A et al (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961

    Article  Google Scholar 

  • O’Brien ET 3rd et al (2008) Ultrathin self-assembled fibrin sheets. Proc Natl Acad Sci USA 105(49):19438–19443

    Article  Google Scholar 

  • O’Toole TE et al (1990) Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul 1(12):883–893

    Article  Google Scholar 

  • Odrljin TM et al (1996a) Calcium modulates plasmin cleavage of the fibrinogen D fragment gamma chain N-terminus: mapping of monoclonal antibody J88B to a plasmin sensitive domain of the gamma chain. Biochim Biophys Acta 1298(1):69–77

    Article  Google Scholar 

  • Odrljin TM et al (1996b) Heparin-binding domain of fibrin mediates its binding to endothelial cells. Arterioscler Thromb Vasc Biol 16(12):1544–1551

    Article  Google Scholar 

  • Okada M, Blomback B (1983) Calcium and fibrin gel structure. Thromb Res 29(3):269–280

    Article  Google Scholar 

  • Okumura N et al (2006) A novel variant fibrinogen, deletion of Bbeta111Ser in coiled-coil region, affecting fibrin lateral aggregation. Clin Chim Acta 365(1–2):160–167

    Article  Google Scholar 

  • Omar MN, Mann KG (1987) Inactivation of factor Va by plasmin. J Biol Chem 262(20):9750–9755

    Article  Google Scholar 

  • Ornelas L et al (2006a) Fibrin glue: an alternative technique for nerve coaptation – Part I. Wave amplitude, conduction velocity, and plantar-length factors. J Reconstr Microsurg 22(2):119–122

    Article  Google Scholar 

  • Ornelas L et al (2006b) Fibrin glue: an alternative technique for nerve coaptation – Part II. Nerve regeneration and histomorphometric assessment. J Reconstr Microsurg 22(2):123–128

    Article  Google Scholar 

  • Owens AP 3rd, Mackman N (2010) Tissue factor and thrombosis: the clot starts here. Thromb Haemost 104(3):432–439

    Article  Google Scholar 

  • Pandya BV, Cierniewski CS, Budzynski AZ (1985) Conservation of human fibrinogen conformation after cleavage of the B beta chain NH2 terminus. J Biol Chem 260(5):2994–3000

    Article  Google Scholar 

  • Pertici V et al (2014) Comparison of a collagen membrane versus a fibrin sealant after a peroneal nerve section and repair: a functional and histological study. Acta Neurochir 156(8):1577–1590

    Article  Google Scholar 

  • Perussi Biscola N et al (2016) Long-standing motor and sensory recovery following acute fibrin sealant based neonatal sciatic nerve repair. Neural Plast 2016:9028126

    Article  Google Scholar 

  • Pettersson J et al (2010) Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. J Plast Reconstr Aesthet Surg 63(11):1893–1899

    Article  Google Scholar 

  • Pettersson J et al (2011) Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 500(1):41–46

    Article  Google Scholar 

  • Pieters M, Wolberg AS (2019) Fibrinogen and fibrin: an illustrated review. Res Pract Thromb Haemost 3(2):161–172

    Article  Google Scholar 

  • Plow EF, Felez J, Miles LA (1991) Cellular regulation of fibrinolysis. Thromb Haemost 66(1):32–36

    Article  Google Scholar 

  • Podor TJ et al (2002) Incorporation of vitronectin into fibrin clots. Evidence for a binding interaction between vitronectin and gamma A/gamma’ fibrinogen. J Biol Chem 277(9):7520–7528

    Article  Google Scholar 

  • Povlsen B (1994) A new fibrin seal in primary repair of peripheral nerves. J Hand Surg Br 19(1):43–47

    Article  Google Scholar 

  • Pryzdial EL et al (1999) Plasmin converts factor X from coagulation zymogen to fibrinolysis cofactor. J Biol Chem 274(13):8500–8505

    Article  Google Scholar 

  • Rafijah G et al (2013) The effects of adjuvant fibrin sealant on the surgical repair of segmental nerve defects in an animal model. J Hand Surg Am 38(5):847–855

    Article  Google Scholar 

  • Rajangam T, An SS (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662

    Google Scholar 

  • Ramos DS et al (2015) Stitchless fibrin glue-aided facial nerve grafting after cerebellopontine angle schwannoma removal: technique and results in 15 cases. Otol Neurotol 36(3):498–502

    Article  Google Scholar 

  • Raum D et al (1980) Synthesis of human plasminogen by the liver. Science 208(4447):1036–1037

    Article  Google Scholar 

  • Reichenberger MA et al (2016) ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model. Microsurgery 36(6):491–500

    Article  Google Scholar 

  • Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43

    Article  Google Scholar 

  • Renne T, Gailani D (2007) Role of factor XII in hemostasis and thrombosis: clinical implications. Expert Rev Cardiovasc Ther 5(4):733–741

    Article  Google Scholar 

  • Rick ME, Krizek DM (1986) Platelets modulate the proteolysis of factor VIII:C protein by plasmin. Blood 67(6):1649–1654

    Article  Google Scholar 

  • Robinson M, Douglas S, Michelle Willerth S (2017) Mechanically stable fibrin scaffolds promote viability and induce neurite outgrowth in neural aggregates derived from human induced pluripotent stem cells. Sci Rep 7(1):6250

    Article  Google Scholar 

  • Romano VM et al (1991) Comparison of fibrin glue, bioresorbable tubing and sutures in peripheral nerve repair. Restor Neurol Neurosci 3(2):75–80

    Google Scholar 

  • Rosso MPO et al (2017) Stimulation of morphofunctional repair of the facial nerve with photobiomodulation, using the end-to-side technique or a new heterologous fibrin sealant. J Photochem Photobiol B 175:20–28

    Article  Google Scholar 

  • Roth F et al (2017) Platelet-rich fibrin conduits as an alternative to nerve autografts for peripheral nerve repair. J Reconstr Microsurg 33(8):549–556

    Article  Google Scholar 

  • Ryan EA et al (1999) Structural origins of fibrin clot rheology. Biophys J 77(5):2813–2826

    Article  Google Scholar 

  • Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96(12):3772–3778

    Article  Google Scholar 

  • Sahni A, Altland OD, Francis CW (2003) FGF-2 but not FGF-1 binds fibrin and supports prolonged endothelial cell growth. J Thromb Haemost 1(6):1304–1310

    Article  Google Scholar 

  • Sahni A et al (2004) Interleukin-1beta but not IL-1alpha binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood 104(2):409–414

    Article  Google Scholar 

  • Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13(15):2214–2224

    Article  Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000a) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69(1):149–158

    Article  Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000b) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402

    Article  Google Scholar 

  • Sakiyama-Elbert SE, Panitch A, Hubbell JA (2001) Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J 15(7):1300–1302

    Article  Google Scholar 

  • Saller MM et al (2018) Validation of a novel animal model for sciatic nerve repair with an adipose-derived stem cell loaded fibrin conduit. Neural Regen Res 13(5):854–861

    Article  Google Scholar 

  • Salmeron-Gonzalez E et al (2018) Masseter-to-facial nerve transfer: technique and outcomes utilizing a fibrin sealant for coaptation. J Plast Reconstr Aesthet Surg 71(8):1216–1230

    Article  Google Scholar 

  • Salmeron-Gonzalez E et al (2019) Technical detail on nerve Coaptation in Phalloplasty: use of fibrin glue instead of sutures. Sex Med Rev 7(2):376

    Article  Google Scholar 

  • Saltz R et al (1991) Experimental and clinical applications of fibrin glue. Plast Reconstr Surg 88(6):1005–1015; discussion 1016–7

    Article  Google Scholar 

  • Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg 127(6):2381–2390

    Article  Google Scholar 

  • Samis JA et al (2000) Proteolytic processing of human coagulation factor IX by plasmin. Blood 95(3):943–951

    Article  Google Scholar 

  • Sarhane KA et al (2019) Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater 88:332–345

    Article  Google Scholar 

  • Scaletta G et al (2019) Obturator nerve regeneration using a genito-femoral graft placed only by fibrin sealant (Tisseel(R)). Gynecol Oncol 153(3):703–704

    Article  Google Scholar 

  • Schaefer C et al (2014) Pain severity and the economic burden of neuropathic pain in the United States: BEAT neuropathic pain observational study. Clinicoecon Outcomes Res 6:483–496

    Google Scholar 

  • Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81

    Article  Google Scholar 

  • Schuh CM et al (2015) Activated Schwann cell-like cells on aligned fibrin-poly(lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration. Cells Tissues Organs 200(5):287–299

    Article  Google Scholar 

  • Schuh C et al (2018) An optimized collagen-fibrin blend engineered neural tissue promotes peripheral nerve repair. Tissue Eng Part A 24(17–18):1332–1340

    Article  Google Scholar 

  • Schwartz ML et al (1973) Human factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem 248(4):1395–1407

    Article  Google Scholar 

  • Seddon HJ, Medawar PB (1942) Fibrin suture of human nerves. Lancet 240(6204):87–88

    Article  Google Scholar 

  • Senses F et al (2016) Effect of platelet-rich fibrin on peripheral nerve regeneration. J Craniofac Surg 27(7):1759–1764

    Article  Google Scholar 

  • Shainoff JR, Dardik BN (1983) Fibrinopeptide B in fibrin assembly and metabolism: physiologic significance in delayed release of the peptide. Ann N Y Acad Sci 408:254–268

    Article  Google Scholar 

  • Siconolfi LB, Seeds NW (2001a) Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci 21(12):4348–4355

    Article  Google Scholar 

  • Siconolfi LB, Seeds NW (2001b) Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J Neurosci 21(12):4336–4347

    Article  Google Scholar 

  • Siconolfi LB, Seeds NW (2003) Mice lacking tissue plasminogen activator and urokinase plasminogen activator genes show attenuated matrix metalloproteases activity after sciatic nerve crush. J Neurosci Res 74(3):430–434

    Article  Google Scholar 

  • Sidelmann JJ et al (2000) Fibrin clot formation and lysis: basic mechanisms. Semin Thromb Hemost 26(6):605–618

    Article  Google Scholar 

  • Siebenlist KR, Mosesson MW (1996) Evidence of intramolecular cross-linked A alpha.gamma chain heterodimers in plasma fibrinogen. Biochemistry 35(18):5817–5821

    Article  Google Scholar 

  • Sierra DH (1993) Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J Biomater Appl 7(4):309–352

    Article  Google Scholar 

  • Silva DN et al (2010) End-to-side nerve repair using fibrin glue in rats. Acta Cir Bras 25(2):158–162

    Article  Google Scholar 

  • Silva MM et al (2012a) Regulation of fibrinolysis by C-terminal lysines operates through plasminogen and plasmin but not tissue-type plasminogen activator. J Thromb Haemost 10(11):2354–2360

    Article  Google Scholar 

  • Silva DN et al (2012b) Nerve growth factor with fibrin glue in end-to-side nerve repair in rats. Acta Cir Bras 27(4):325–332

    Article  Google Scholar 

  • Singer M (1945) The combined use of fibrin film and clot in end-to-end Union of Nerves. J Neurosurg 2(2):102

    Article  Google Scholar 

  • Sinovskii PV, Filatov AN (1950) Results in application of a fibrin membrane and filaments in neurosurgery; dynamics of absorption of fibrin filaments in the nerve. Vopr Neirokhir 14(6):25–29

    Google Scholar 

  • Slaughter TF, Greenberg CS (1997) Antifibrinolytic drugs and perioperative hemostasis. Am J Hematol 56(1):32–36

    Article  Google Scholar 

  • Smahel J, Meyer VE (1995) Fibrin Glueing of peripheral nerves. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Spartalis E et al (2018) Platelet-rich fibrin and its contradictory effect on peripheral nerve repair after malignant tumor resection: nerve regeneration versus Cancer proliferation. J Reconstr Microsurg

    Google Scholar 

  • Spotnitz WD (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34(4):632–634

    Article  Google Scholar 

  • Spotnitz WD (2014) Fibrin sealant: the only approved hemostat, sealant, and adhesive-a laboratory and clinical perspective. ISRN Surg 2014:203943

    Article  Google Scholar 

  • Spotnitz WD, Prabhu R (2005) Fibrin sealant tissue adhesive – review and update. J Long-Term Eff Med Implants 15(3):245–270

    Article  Google Scholar 

  • Spraggon G, Everse SJ, Doolittle RF (1997) Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 389(6650):455–462

    Article  Google Scholar 

  • Stryer L, Cohen C, Langridge R (1963) Axial period of fibrinogen and fibrin. Nature 197:793–794

    Article  Google Scholar 

  • Suehiro K, Gailit J, Plow EF (1997) Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 272(8):5360–5366

    Article  Google Scholar 

  • Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13(1):100–108

    Google Scholar 

  • Tajdaran K et al (2016) An engineered biocompatible drug delivery system enhances nerve regeneration after delayed repair. J Biomed Mater Res A 104(2):367–376

    Article  Google Scholar 

  • Tarlov IM (1944) Autologous plasma clot suture of nerves: its use in clinical surgery. JAMA 126(12):741–748

    Article  Google Scholar 

  • Tarlov IM, Benjamin B (1942) Autologous plasma clot suture of nerves. Science 95(2462):258

    Article  Google Scholar 

  • Tarlov IM, Boernstein W (1948) Nerve regeneration; a comparative experimental study following suture by clot and thread. J Neurosurg 5(1):62–83

    Article  Google Scholar 

  • Tarlov IM et al (1943) Plasma clot suture of nerves: experimental technic. JAMA Surg 47(1):44–58

    Google Scholar 

  • Tate KM et al (1987) Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis. Biochemistry 26(2):338–343

    Article  Google Scholar 

  • Taylor SJ, McDonald JW 3rd, Sakiyama-Elbert SE (2004) Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 98(2):281–294

    Article  Google Scholar 

  • Temple CL et al (2004) Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstr Microsurg 20(8):645–650

    Article  Google Scholar 

  • Theberge NP, Ziccardi VB (2016) Use of fibrin glue as an adjunct in the repair of lingual nerve injury: case report. J Oral Maxillofac Surg 74(9):1899.e1–1899.e14

    Article  Google Scholar 

  • Torul D et al (2018) Comparison of the regenerative effects of platelet-rich fibrin and plasma rich in growth factors on injured peripheral nerve: an experimental study. J Oral Maxillofac Surg 76(8):1823.e1–1823.e12

    Article  Google Scholar 

  • Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709

    Article  Google Scholar 

  • Trezzini C et al (1988) Fibrinogen association with human monocytes: evidence for constitutive expression of fibrinogen receptors and for involvement of Mac-1 (CD18, CR3) in the binding. Biochem Biophys Res Commun 156(1):477–484

    Article  Google Scholar 

  • Trezzini C et al (1991) Evidence that exposure to fibrinogen or to antibodies directed against Mac-1 (CD11b/CD18; CR3) modulates human monocyte effector functions. Br J Haematol 77(1):16–24

    Article  Google Scholar 

  • Tsurupa G et al (2009) Structure, stability, and interaction of the fibrin(ogen) alphaC-domains. Biochemistry 48(51):12191–12201

    Article  Google Scholar 

  • Undas A, Ariens RA (2011) Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 31(12):e88–e99

    Article  Google Scholar 

  • van der Hulle T et al (2013a) Variable D-dimer thresholds for diagnosis of clinically suspected acute pulmonary embolism. J Thromb Haemost 11(11):1986–1992

    Article  Google Scholar 

  • van der Hulle T et al (2013b) Selective D-dimer testing for the diagnosis of acute deep vein thrombosis: a validation study. J Thromb Haemost 11(12):2184–2186

    Article  Google Scholar 

  • Veklich YI et al (1993) Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization. J Biol Chem 268(18):13577–13585

    Article  Google Scholar 

  • Velada JL et al (2002) Reproducibility of the mechanical properties of Vivostat system patient-derived fibrin sealant. Biomaterials 23(10):2249–2254

    Article  Google Scholar 

  • Veldman A, Hoffman M, Ehrenforth S (2003) New insights into the coagulation system and implications for new therapeutic options with recombinant factor VIIa. Curr Med Chem 10(10):797–811

    Article  Google Scholar 

  • Vidigal de Castro M et al (2016) Direct spinal ventral root repair following avulsion: effectiveness of a new heterologous fibrin sealant on Motoneuron survival and regeneration. Neural Plast 2016:2932784

    Article  Google Scholar 

  • Vieira WF et al (2016) Low-level laser therapy (904 nm) counteracts motor deficit of mice hind limb following skeletal muscle injury caused by snakebite-mimicking intramuscular venom injection. PLoS One 11(7)

    Google Scholar 

  • von Büngner O (1891) Über die Degenerations- und Regenerationsvorgänge am Nerven nach Verletzungen. Beiträge zur pathologischen Anatomie 10:321–387

    Google Scholar 

  • Walton BL, Byrnes JR, Wolberg AS (2015) Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J Thromb Haemost 13(Suppl 1):S208–S215

    Article  Google Scholar 

  • Wang Y et al (2013) A synthetic oxygen carrier in fibrin matrices promotes sciatic nerve regeneration in rats. Acta Biomater 9(7):7248–7263

    Article  Google Scholar 

  • Wang W et al (2018) Nerve repair with fibrin nerve conduit and modified suture placement. Anat Rec (Hoboken) 301(10):1690–1696

    Article  Google Scholar 

  • Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112(2–3):267–276

    Article  Google Scholar 

  • Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299

    Article  Google Scholar 

  • Weisel JW, Litvinov RI (2013) Mechanisms of fibrin polymerization and clinical implications. Blood 121(10):1712–1719

    Article  Google Scholar 

  • Weisel JW, Nagaswami C (1992) Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 63(1):111–128

    Article  Google Scholar 

  • Weisshaar CL et al (2011) The potential for salmon fibrin and thrombin to mitigate pain subsequent to cervical nerve root injury. Biomaterials 32(36):9738–9746

    Article  Google Scholar 

  • Whelan D, Caplice NM, Clover AJ (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8

    Article  Google Scholar 

  • Whitlock EL et al (2010) Fibrin glue mitigates the learning curve of microneurosurgical repair. Microsurgery 30(3):218–222

    Article  MathSciNet  Google Scholar 

  • Williams LR (1987) Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res 12(10):851–860

    Article  Google Scholar 

  • Williams LR, Varon S (1985) Modification of fibrin matrix formation in situ enhances nerve regeneration in silicone chambers. J Comp Neurol 231(2):209–220

    Article  Google Scholar 

  • Williams LR et al (1983) Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol 218(4):460–470

    Article  Google Scholar 

  • Williams LR et al (1993) Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber. Exp Neurol 120(1):49–59

    Article  Google Scholar 

  • Wiman B, Boman L, Collen D (1978) On the kinetics of the reaction between human antiplasmin and a low-molecular-weight form of plasmin. Eur J Biochem 87(1):143–146

    Article  Google Scholar 

  • Wojtecka-Lukasik E, Maslinski S (1992) Fibronectin and fibrinogen degradation products stimulate PMN-leukocyte and mast cell degranulation. J Physiol Pharmacol 43(2):173–181

    Google Scholar 

  • Wojtkiewicz DM et al (2015) Social impact of peripheral nerve injuries. Hand (NY) 10(2):161–167

    Article  Google Scholar 

  • Wood MD et al (2009) Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 5(4):959–968

    Article  Google Scholar 

  • Wood MD et al (2013) Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair. Regen Med 8(1):27–37

    Article  Google Scholar 

  • Wu X et al (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6(3):1167–1177

    Article  Google Scholar 

  • Yakovlev S et al (2003) Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry 42(25):7709–7716

    Article  Google Scholar 

  • Yang Z, Mochalkin I, Doolittle RF (2000) A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci U S A 97(26):14156–14161

    Article  Google Scholar 

  • Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  Google Scholar 

  • Yannascoli SM et al (2018) A population-based assessment of depression and anxiety in patients with brachial plexus injuries. J Hand Surg Am 43(12):1136.e1–1136.e9

    Article  Google Scholar 

  • Yao S et al (2016) Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. Nanoscale 8(19):10252–10265

    Article  Google Scholar 

  • Yin Q et al (2001) Neurotrophin-4 delivered by fibrin glue promotes peripheral nerve regeneration. Muscle Nerve 24(3):345–351

    Article  Google Scholar 

  • Young JZ, Medawar PB (1940) Fibrin suture of peripheral nerves: measurement of the rate of regeneration. Lancet 236(6101):126–128

    Article  Google Scholar 

  • Yu P et al (2018) Clinical application of platelet-rich fibrin in plastic and reconstructive surgery: a systematic review. Aesthet Plast Surg 42(2):511–519

    Article  Google Scholar 

  • Yu Z et al (2020) Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng 14:22

    Article  Google Scholar 

  • Zhao Q et al (1992) The formation of a ‘pseudo-nerve’ in silicone chambers in the absence of regenerating axons. Brain Res 592(1–2):106–114

    Article  Google Scholar 

  • Zhao Z et al (2014) Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell Transplant 23(1):97–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Heher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Heinzel, J.C., Gloeckel, M., Gruber, A., Heher, P., Hercher, D. (2021). Fibrin in Nerve Tissue Engineering. In: Phillips, J., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-06217-0_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06217-0_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06217-0

  • Online ISBN: 978-3-030-06217-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics