Skip to main content

Lunar Outpost Analogs

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Lunar Base Design and Development

Abstract

Analogs are a critical part of preparing for the real operational challenges that come with any spaceflight mission including establishing and maintaining a lunar base. Effective planning and design depend on a feedback loop between envisioning a solution and actually implementing and evaluating the effectiveness of that solution. The complexity of vehicle and habitat systems that are needed to enable the creation of a lunar base require a strong methodology for closing that feedback loop. Analog simulation can provide opportunities for discovery of issues in complex systems, refinement of training for those systems, and validation of the utility of systems that human crews must use. This chapter reviews analog uses, assumptions, fidelity, evaluation methods, and their applicability to the unique case of a lunar outpost. Specific case studies of current analogs are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abercromby A, Alpert B, Cupples J, Dillon E, Garbino A, Hernandez Y, Kovich C, Miller M, Norcross J, Pittman C, Rajulu S, Rhodes R (2019) Integrated extravehicular activity human research & testing plan: 2019; NASA/TP-2019-220232. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Abercromby AF, Chappell SP, Litaker H, Reagan M, Gernhardt ML (2013a) NASA Research and Technology Studies (RATS) 2012: virtual simulation and evaluation of human and robotic Systems for Exploration of near-earth asteroids. In: 43rd International conference on environmental systems, American Institute of Aeronautics and Astronautics, Vail, CO

    Google Scholar 

  • Abercromby AF, Gernhardt ML, Litaker H (2012) Desert Research and Technology Studies (DRATS) 2009: a 14-day evaluation of the space exploration vehicle prototype in a lunar analog environment NASA/TP-2012-217360. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Abercromby AFJ, Chappell SP, Gernhardt ML (2013b) Desert RATS 2011: human and robotic exploration of near-Earth asteroids. Acta Astronaut 91:34–48. https://doi.org/10.1016/j.actaastro.2013.05.002

    Article  ADS  Google Scholar 

  • Abercromby AFJ, Conkin J, Gernhardt ML (2015) Modeling a 15-min extravehicular activity prebreathe protocol using NASA′s exploration atmosphere (56.5kPa/34% O2). Acta Astronaut 109:76–87. https://doi.org/10.1016/j.actaastro.2014.11.039

    Article  ADS  Google Scholar 

  • Abercromby AFJ, Gernhardt ML, Jadwick J (2013c) Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration. Acta Astronaut 90:203–214. https://doi.org/10.1016/j.actaastro.2012.02.022

    Article  ADS  Google Scholar 

  • Abercromby AFJ, Gernhardt ML, Litaker H (2010) Desert Research and Technology Studies (DRATS) 2008 evaluation of small pressurized rover and unpressurized rover prototype vehicles in a lunar analog environment NASA/TP-2010-216136. NASA

    Google Scholar 

  • Beaton KH, Chappell SP, Abercromby AFJ, Miller MJ, Kobs Nawotniak SE, Brady AL, Stevens AH, Payler SJ, Hughes SS, Lim DSS (2019a) Using science-driven analog research to investigate extravehicular activity science operations concepts and capabilities for human planetary exploration. Astrobiology 19:300–320. https://doi.org/10.1089/ast.2018.1861

    Article  ADS  Google Scholar 

  • Beaton KH, Chappell SP, Abercromby AFJ, Miller MJ, Kobs Nawotniak SE, Brady AL, Stevens AH, Payler SJ, Hughes SS, Lim DSS (2019b) Assessing the acceptability of science operations concepts and the level of mission enhancement of capabilities for human Mars exploration extravehicular activity. Astrobiology 19:321–346. https://doi.org/10.1089/ast.2018.1912

    Article  ADS  Google Scholar 

  • Chappell S, Abercromby A, Gernhardt M (2013) NEEMO 15: evaluation of human exploration systems for near-Earth asteroids. https://doi.org/10.1016/J.ACTAASTRO.2013.03.002

  • Chappell SP, Graff TG, Beaton KH, Abercromby AFJ, Halcon C, Miller MJ, Gernhardt ML (2016) NEEMO 18–20: analog testing for mitigation of communication latency during human space exploration. In: 2016 IEEE Aerospace Conference. pp. 1–12

    Google Scholar 

  • Conkin J, Pollock NW, Natoli MJ, Martina SD, Wessel JH, Gernhardt ML (2017) Venous gas emboli and ambulation at 4.3 psia. Aerosp Med Human Perform 88:370–376. https://doi.org/10.3357/AMHP.4733.2017

    Article  Google Scholar 

  • Davis K, Meginnis I (2019) Testing of the NASA exploration Extravehicular Mobility Unit Demonstration (xEMU Demo) architecture at the Neutral Buoyancy Laboratory (NBL)

    Google Scholar 

  • Graff T, Young K, Coan D, Merselis D, Bellantuono A, Dougan K, Rodriguez-Lanetty M, Nedimyer K, Chappell S, Beaton K, Hood A, Reagan M, Rampe E, Todd W, Poffenberger J, Garrison D (2017) NEEMO 21: tools, techniques, technologies, and training for science exploration. https://ntrs.nasa.gov/citations/20160013664

  • Gruener J, Lofgren G, Bluethmann W, Abercromby A (2013) NASA Desert RATS 2010: preliminary results for science operations conducted in the San Francisco Volcanic Field, Arizona. Acta Astronaut 90:406–415. https://doi.org/10.1016/j.actaastro.2011.12.006

    Article  ADS  Google Scholar 

  • Lee Y (2012) Mitigating human exploration missions risks by utilizing the International Space Station Test Bed for Analog Research (ISTAR). In: SpaceOps 2012 Conference. American Institute of Aeronautics and Astronautics, Stockholm, Sweden

    Google Scholar 

  • Lim D, Brady A, Abercromby A, Andersen D, Andersen M, Arnold RR, Bird JS, Bohm HR, Booth L, Cady S, Cardman Z, Chan A, Chan O, Chénard C, Cowie BR, Davila A, Deans M, Dearing W, Delaney M, Winter C (2011) A historical overview of the Pavilion Lake Research Project – analog science and exploration in an underwater environment. Spec Pap Geol Soc Am 483:85–116. https://doi.org/10.1130/2011.2483(07)

    Article  Google Scholar 

  • Lim DSS, Abercromby AFJ, Kobs Nawotniak SE, Lees DS, Miller MJ, Brady AL, Miller MJ, Mirmalek Z, Sehlke A, Payler SJ, Stevens AH, Haberle CW, Beaton KH, Chappell SP, Hughes SS, Cockell CS, Elphic RC, Downs MT, Heldmann JL, the BASALT Team (2019) The BASALT research program: designing and developing mission elements in support of human scientific exploration of Mars. Astrobiology 19:245–259. https://doi.org/10.1089/ast.2018.1869

    Article  ADS  Google Scholar 

  • Miller MJ, Lim DSS, Brady AL, Cardman Z, Bell E, Garry WB, Reid D, Chappell S, Abercromby AFJ (2016) PLRP-3: operational perspectives conducting science-driven extravehicular activity with communications latency. In: 2016 IEEE Aerospace Conference. pp. 1–13

    Google Scholar 

  • NASA Johnson Space Center Active Response Gravity Offload System. https://www.nasa.gov/centers/johnson/engineering/integrated_environments/active_response_gravity/. Accessed 25 Feb 2020

  • Nelson GA (2016) Space radiation and human exposures, a primer. Radiat Res 185:349–358. https://doi.org/10.1667/RR14311.1

    Article  ADS  Google Scholar 

  • Reschke M, Kozlovskaya IB, Kofman IS, Tomilovskaya ES, Cerisano JM, Bloomberg JJ, Stenger MB, Lee SMC, Laurie SS, Rukavishnikov IV, Fomina EV, Wood SJ, Mulavara AP, Feiveson AH, Fisher EA, Rosenberg MJF, Kitov VV, Lysova NY, (2016) Sensorimotor results from the joint NASA and Russian pilot field test. NASA Human Research Program Investigators''Workshop (HRP IWS 2016) (No. JSC-CN-34934), Galveston, TX

    Google Scholar 

  • Reschke MF (2018) Applying results of the field test to risks associated with unassisted emergency egress

    Google Scholar 

  • Robinson J, Waid M, Korth D, Rucker M, Renfrew R (2019) Innovative approaches to using the International Space Station as a Mars transit analog. In: 70th International Astronautical Congress. pp. 1–12

    Google Scholar 

  • ROI – Flight Analogs Human Research Program (2019) Human research program Human Exploration Research Analog (HERA) Facility and Capabilities Information

    Google Scholar 

  • Vessey WB, Cromwell RL, Platts S (2017) NASA’s Human Exploration Research Analog (HERA) for studying behavioral effects of exploration missions. In: Aerospace Medical Association (AsMA) annual scientific meeting (No. JSC-CN-39445), Denver, CO. https://ntrs.nasa.gov/citations/20170003940

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew F. J. Abercromby .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abercromby, A.F.J., Easter, B. (2023). Lunar Outpost Analogs. In: Eckart, P., Aldrin, A. (eds) Handbook of Lunar Base Design and Development. Springer, Cham. https://doi.org/10.1007/978-3-030-05323-9_6-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05323-9_6-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05323-9

  • Online ISBN: 978-3-030-05323-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lunar Outpost Analogs
    Published:
    04 January 2023

    DOI: https://doi.org/10.1007/978-3-030-05323-9_6-2

  2. Original

    Lunar Outpost Analogs
    Published:
    16 December 2022

    DOI: https://doi.org/10.1007/978-3-030-05323-9_6-1