Skip to main content

Physiological Requirements of a Lunar Base Crew

  • Living reference work entry
  • First Online:
Handbook of Lunar Base Design and Development

Abstract

This chapter provides a high-level overview of the physiologic requirements of a lunar base crew that drive the Environmental Control and Life Support System (ECLSS) and Crew Health and Performance (CHP) System requirements. All humans require air to breathe, adequate water and food, and sufficient sleep to be productive. In the spaceflight environment and on the lunar surface, the technological challenges involved in providing those are daunting. While ECLSS provide for many fundamental human needs, it is important to understand how and when those needs may change as missions change. Exposure to the spaceflight environment deconditions humans over time, and the distance from Earth plays a role in the system’s ability to accommodate human needs. What people eat, drink, and how they sleep or rest impact how well they are able to do the jobs required for building and maintaining a lunar base. It is tempting for mission designers to assume that many of the human challenges can be addressed by solutions used in low Earth orbit (LEO). This would be a costly assumption, for while some solutions can apply, other challenges such as lunar dust exposure have no corollary in LEO. The physiologic requirements of a lunar base crew must be considered in every step of lunar base design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abercromby AF, Conkin J, Gernhardt ML (2015) Modeling a 15-min extravehicular activity prebreathe protocol using NASA’s exploration atmosphere (56.5 kPa/34% O2). Acta Astronaut 109:76–87

    Article  ADS  Google Scholar 

  • Allen, C, Danielson R (2020) Multilateral medical operations panel’s acoustics sub-working group for the International Space Station, National Hearing Conservation Association Conference, Miramar, FL

    Google Scholar 

  • Ball JR, Evans CH (eds) (2001) Safe passage: astronaut care for exploration missions. National Academies Press

    Google Scholar 

  • Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright KP, Czeisler CA (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13:904–912. https://doi.org/10.1016/S1474-4422(14)70122-X

    Article  Google Scholar 

  • Basner M, Dinges DF (2014) Lost in space: sleep. Lancet Neurol 13:860–862. https://doi.org/10.1016/S1474-4422(14)70176-0

    Article  Google Scholar 

  • Bogomolov VV, Castrucci F, Comtois J-M, Damann V, Davis JR, Duncan JM, Johnston SL, Gray GW, Grigoriev AI, Koike Y, Kuklinski P, Matveyev VP, Morgun VV, Pochuev VI, Sargsyan AE, Shimada K, Straube U, Tachibana S, Voronkov YV, Williams RS (2007) International Space Station medical standards and certification for space flight participants. Aviat Space Environ Med 78:1162–1169. https://doi.org/10.3357/ASEM.2175.2007

    Article  Google Scholar 

  • Burton-Freeman BM, Sesso HD (2014) Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv Nutr 5:457–485. https://doi.org/10.3945/an.114.005231

    Article  Google Scholar 

  • Caddick ZA, Gregory K, Flynn-Evans EE (2017) Sleep environment recommendations for future spaceflight vehicles. In: Stanton N, Landry S, Di Bucchianico G, Vallicelli A (eds) Advances in human aspects of transportation. Advances in Intelligent Systems and Computing, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-319-41682-3_76

  • Carpentier WR, Charles JB, Shelhamer M, Hackler AS, Johnson TL, Domingo CM, Sutton JP, Scott GB, Wotring VE (2018) Biomedical findings from NASA’s Project Mercury: a case series. NPJ Micrograv 4:6

    Article  Google Scholar 

  • Catauro PM, Perchonok MH (2012) Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. J Food Sci 77:S29–S39

    Article  Google Scholar 

  • Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 64:456–463. https://doi.org/10.1016/j.phrs.2011.07.005

    Article  Google Scholar 

  • Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, Ennico K, Hermalyn B, Marshall W, Ricco A, Elphic RC et al (2010) Detection of water in the LCROSS ejecta plume. Science 330:463–468

    Article  ADS  Google Scholar 

  • Cooper M, Perchonok M, Douglas GL (2017) Initial assessment of the nutritional quality of the space food system over three years of ambient storage. NPJ Micrograv 3:17

    Article  Google Scholar 

  • Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C (2015) Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Micrograv 1:15013. https://doi.org/10.1038/npjmgrav.2015.13

    Article  Google Scholar 

  • Crucian B, Babiak-Vazquez A, Johnston S, Pierson D, Ott CM, Sams C (2016) Incidence of clinical symptoms during long-duration orbital spaceflight. IJGM 9:383–391. https://doi.org/10.2147/IJGM.S114188

    Article  Google Scholar 

  • Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A et al (2018) Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol 9:1437

    Article  Google Scholar 

  • Dana Carpenter R, LeBlanc AD, Evans H, Sibonga JD, Lang TF (2010) Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut 67:71–81. https://doi.org/10.1016/j.actaastro.2010.01.022

    Article  ADS  Google Scholar 

  • Davis JR, Stepanek J, Fogarty JA, Blue RS (eds) (2022) Fundamentals of aerospace medicine, 5th edn. Wolters Kluwer, Philadelphia, PA

    Google Scholar 

  • De Sanctis V, Soliman N, Soliman AT, Elsedfy H, Di Maio S, El Kholy M, Fiscina B (2017) Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: a significant public health hazard. Acta Bio Medica Atenei Parmensis 88. https://doi.org/10.23750/abm.v88i2.6664

  • Depner CM, Melanson EL, Eckel RH, Snell-Bergeon JK, Perreault L, Bergman BC, Higgins JA, Guerin MK, Stothard ER, Morton SJ, Wright KP (2019) Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr Biol 29:957–967.e4. https://doi.org/10.1016/j.cub.2019.01.069

    Article  Google Scholar 

  • Diedrich A, Paranjape SY, Robertson D (2007) Plasma and blood volume in space. Am J Med Sci 334:80–86. https://doi.org/10.1097/MAJ.0b013e318065b89b

    Article  Google Scholar 

  • Dinges DF, Basner M, Ecker AJ, Baskin P, Johnston SL (2019) Effects of zolpidem and zaleplon on cognitive performance after emergent morning awakenings at Tmax: a randomized placebo-controlled trial. Sleep 42. https://doi.org/10.1093/sleep/zsy258

  • Douglas GL, Cooper M, Bermudez-Aguirre D, Sirmons T (2016) Risk of performance decrement and crew illness due to an inadequate food system. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Flynn-Evans EE, Barger LK, Kubey AA, Sullivan JP, Czeisler CA (2016a) Circadian misalignment affects sleep and medication use before and during space flight. Nature Publishing Group, pp 1–6. https://doi.org/10.1038/npjmgrav.2015.19

    Book  Google Scholar 

  • Flynn-Evans EE, Caddick ZA, Gregory K, Center JS (2016b) Sleep environment recommendations for future spaceflight vehicles

    Google Scholar 

  • Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364:eaau8650

    Article  Google Scholar 

  • Holland D (2002) 6.4.1 A case study of the near-catastrophic MIR-progress 234 collision with emphasis on the human factors/systems-level issues surrounding this Mishap. INCOSE Int Symp 12:820–827. https://doi.org/10.1002/j.2334-5837.2002.tb02544.x

    Article  Google Scholar 

  • Hurley DM, Gladstone GR, Stern SA, Retherford KD, Feldman PD, Pryor W, Egan AF, Greathouse TK, Kaufmann DE, Steffl AJ et al (2012) Modeling of the vapor release from the LCROSS impact: 2. Observations from LAMP. J Geophys Res: Planets 117:1–15. https://doi.org/10.1029/2011JE003841

  • National Research Council (2008) Spacecraft maximum allowable concentrations for selected airborne contaminants: Volume 5. The National Academies Press, Washington, D.C

    Google Scholar 

  • James JT, Lam C-W, Santana PA, Scully RR (2013) Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling. Inhal Toxicol 25:243–256. https://doi.org/10.3109/08958378.2013.777821

    Article  Google Scholar 

  • James J, Lam C, Scully R, Myers V, McCoy J (2014) Lunar Airborne Toxicity Assessment Group (LADTAG): NASA final report. NASA Johnson Space Center, Houston

    Google Scholar 

  • Johnston SL, Blue RS, Jennings RT, Tarver WJ, Gray GW (2014) Astronaut medical selection during the shuttle era: 1981–2011. Aviat Space Environ Med 85:823–827

    Article  Google Scholar 

  • Jones L, Jacques S, Tranfield S, Rask J, Kerschmann R, Loftus D, Taylor L (2009) NASA human research program investigators’ workshop. League City

    Google Scholar 

  • Kerstman EL, Scheuring RA, Barnes MG, DeKorse TB, Saile LG (2012) Space adaptation back pain: a retrospective study. Aviat Space Environ Med 83:2–7. https://doi.org/10.3357/ASEM.2876.2012

    Article  Google Scholar 

  • Kirkpatrick AW, Campbell MR, Brenneman FD, Boulanger BR, Williams D, Breeck K (1998) Trauma laparotomy in space: a discussion of the potential indications, conduct of operation, and technical support for the treatment of abdominal trauma during long duration space exploration. SAE International, Warrendale

    Google Scholar 

  • Korotev RL, Jolliff BL, Zeigler RA, Gillis JJ, Haskin LA (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta 67:4895–4923

    Article  ADS  Google Scholar 

  • Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175:377–399. https://doi.org/10.1007/s00221-006-0697-y

    Article  Google Scholar 

  • Lam C, Scully RR, Zhang Y, Renne RA, Hunter RL, McCluskey RA, Chen BT, Castranova V, Driscoll KE, Gardner DE, McClellan RO, Cooper BL, McKay DS, Marshall L, James JT (2013) Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal Toxicol 25:661–678. https://doi.org/10.3109/08958378.2013.833660

    Article  Google Scholar 

  • Landon LB, Douglas GL, Downs ME, Greene MR, Whitmire AM, Zwart SR, Roma PG (2019) The behavioral biology of teams: multidisciplinary contributions to social dynamics in isolated, confined, and extreme environments. Front Psychol 10:2571

    Article  Google Scholar 

  • Law J, Van Baalen M, Foy M, Mason SS, Mendez C, Wear ML, Meyers VE, Alexander D (2014) Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med 56:477–483

    Article  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A et al (2000a) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164

    Article  Google Scholar 

  • LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000b) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160

    Google Scholar 

  • Lee SMC, Feiveson AH, Stein S, Stenger MB, Platts SH (2015) Orthostatic intolerance after ISS and space shuttle missions. Aerosp Med Hum Perform 86:54–67. https://doi.org/10.3357/AMHP.EC08.2015

    Article  Google Scholar 

  • Lee AG, Mader TH, Gibson CR, Tarver W, Rabiei P, Riascos RF, Galdamez LA, Brunstetter T (2020) Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Micrograv 6:7. https://doi.org/10.1038/s41526-020-0097-9

    Article  ADS  Google Scholar 

  • Lilley S (ed) (2010) Spektr of Failure. System Failure Case Studies 4, 11

    Google Scholar 

  • Limardo JG, Allen CS, Danielson RW (2015) Status: crewmember noise exposures on the International Space Station. ICES-2015-239. In: 45th International Conference on Environmental Systems. Bellvue, Washington

    Google Scholar 

  • Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520S. https://doi.org/10.1093/ajcn/78.3.517S

    Article  Google Scholar 

  • Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069

    Article  Google Scholar 

  • Marriott BM et al (1995) Not eating enough: overcoming underconsumption of military operational rations. National Academies Press, Washington D.C.

    Google Scholar 

  • Mays MZ (1995) Not eating enough: overcoming underconsumption of military operational rations. A report of the Committee on Military Nutrition Research. Food and Nutrition Board. National Academy Press, Washington, DC

    Google Scholar 

  • McKay DS, Cooper BL, Taylor LA, James JT, Thomas-Keprta K, Pieters CM, Wentworth SJ, Wallace WT, Lee TS (2015) Physicochemical properties of respirable-size lunar dust. Acta Astronaut 107:163–176. https://doi.org/10.1016/j.actaastro.2014.10.032

    Article  ADS  Google Scholar 

  • NASA (2022) NASA spaceflight human system standard 3001: Volume 1: Crew Health, Revision B, Washington, D.C.

    Google Scholar 

  • NASA (2022) NASA space flight human-system standard volume 2: human factors, habitability, and environmental health: Revision C, Washington, D.C.

    Google Scholar 

  • Norcross J, Conkin J, Wessel J et al (2015) Risk of hypobaric hypoxia from the exploration atmosphere: evidence report. NASA, Houston

    Google Scholar 

  • Nowak ES, Reyes DP, Bryant BJ, Cap AP, Kerstman EL, Antonsen EL (2019) Blood transfusion for deep space exploration. Transfusion 59:3077–3083. https://doi.org/10.1111/trf.15493

    Article  Google Scholar 

  • Papike J, Taylor L, Simon S (1991) Lunar minerals. Lunar Sourcebook 121:182

    Google Scholar 

  • Park J, Liu Y, Kihm KD, Taylor LA (2008) Characterization of lunar dust for toxicological studies. I: particle size distribution. J Aerosp Eng 21:266–271

    Article  Google Scholar 

  • Penniston KL, Tanumihardjo SA (2006) The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 83:191–201. https://doi.org/10.1093/ajcn/83.2.191

  • Platts S, Stenger MB, Lee S, Westby CM, Phillips TR, Arzeno NM, Johnston S, Mulugeta L (2015) Risk of orthostatic intolerance during re-exposure to gravity. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Ramachandran V, Dalal S, Scheuring RA, Jones JA (2018) Musculoskeletal injuries in astronauts: review of pre-flight, in-flight, post-flight, and extravehicular activity injuries. Curr Pathobiol Rep 6:149–158. https://doi.org/10.1007/s40139-018-0172-z

    Article  Google Scholar 

  • Robertson MD, Russell-Jones D, Umpleby AM, Dijk D-J (2013) Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metabolism 62:204–211

    Article  Google Scholar 

  • Roulette J (2021) SpaceX’s latest engineering challenge: a leaky toilet. The New York Times

    Google Scholar 

  • Scheuring RA, Jones JA, Novak JD, Polk JD, Gillis DB, Schmid J, Duncan JM, Davis JR (2008) The Apollo Medical Operations Project: recommendations to improve crew health and performance for future exploration missions and lunar surface operations. Acta Astronaut 63:980–987. https://doi.org/10.1016/j.actaastro.2007.12.065

    Article  ADS  Google Scholar 

  • Scheuring RA, Mathers CH, Jones JA, Wear ML (2009) Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in U.S. Astronauts. Aviat Space Environ Med 80:117–124. https://doi.org/10.3357/ASEM.2270.2009

    Article  Google Scholar 

  • Scott D, Leonov A, Toomey C (2006) Two sides of the moon: our story of the cold war space race. St. Martin’s Press, New York, NY

    Google Scholar 

  • Scully RR, Meyers VE (2015) Risk of adverse health and performance effects of celestial dust exposure. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Shelley T (2019) Roscosmos and space adventures sign contract for orbital space tourist flight. In: Space adventures. https://spaceadventures.com/blog/roscosmos-and-space-adventures-sign-contract-for-orbital-space-tourist-flight/. Accessed 21 Nov 2019

  • Sibonga JD, Spector ER, Johnston SL, Tarver WJ (2015) Evaluating bone loss in ISS Astronauts. Aerosp Med Human Perform 86:A38–A44. https://doi.org/10.3357/AMHP.EC06.2015

    Article  Google Scholar 

  • Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE (2005) The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 135:437–443

    Article  Google Scholar 

  • Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906. https://doi.org/10.1002/jbmr.1647

    Article  Google Scholar 

  • Smith SM, Zwart SR, Heer M (2015) Evidence report: risk factor of inadequate nutrition. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • So-ngern A, Chirakalwasan N, Saetung S, Chanprasertyothin S, Thakkinstian A, Reutrakul S (2019) Effects of two-week sleep extension on glucose metabolism in chronically sleep-deprived individuals. JCSM 15:711–718. https://doi.org/10.5664/jcsm.7758

    Article  Google Scholar 

  • STD N (2022) NASA Spaceflight Human-System Standard Volume 2: Human Factors, Habitability, and Environmental Health: Revision C, Washington, D.C.

    Google Scholar 

  • Stenger MB, Tarver WJ, Brunstetter T, Gibson CR, Laurie SS, Lee S, Macias BR, Mader TH, Otto C, Smith SM, et al (2017) Evidence report: risk of spaceflight associated neuro-ocular syndrome (SANS). NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Stuster J (2010) Behavioral issues associated with long-duration space expeditions: review and analysis of astronaut journals: experiment 01-E104 (Journals): Final Report. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Stuster J (2016) Behavioral issues associated with long duration space expeditions: review and analysis of astronaut journals experiment 01-E104 (Journals) Phase 2 final report, NASA/TM-2016-218603

    Google Scholar 

  • Stuster J, Adolf J, Byrne V, Greene M, Center JS (2019) Generalizable skills and knowledge for exploration missions

    Google Scholar 

  • Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84:5–17. https://doi.org/10.1093/ajcn/84.1.5

  • Zhang L-F, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98:59–87. https://doi.org/10.1152/physrev.00017.2016

    Article  ADS  Google Scholar 

  • Zwart SR, Kloeris VL, Perchonok MH, Braby L, Smith SM (2009) Assessment of nutrient stability in foods from the space food system after long-duration spaceflight on the ISS. J Food Sci 74:H209–H217. https://doi.org/10.1111/j.1750-3841.2009.01265.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Antonsen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mulcahy, R., Douglas, G., McCoy, T., Antonsen, E. (2022). Physiological Requirements of a Lunar Base Crew. In: Eckart, P., Aldrin, A. (eds) Handbook of Lunar Base Design and Development. Springer, Cham. https://doi.org/10.1007/978-3-030-05323-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05323-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05323-9

  • Online ISBN: 978-3-030-05323-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics