Skip to main content

Advertisement

Log in

Space motion sickness

  • Review Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motion sickness remains a persistent problem in spaceflight. The present review summarizes available knowledge concerning the incidence and onset of space motion sickness and aspects of the physiology of motion sickness. Proposed etiological factors in the elicitation of space motion sickness are evaluated including fluid shifts, head movements, visual orientation illusions, Coriolis cross-coupling stimulation, and otolith asymmetries. Current modes of treating space motion sickness are described. Theoretical models and proposed ground-based paradigms for understanding and studying space motion sickness are critically analyzed. Prediction tests and questionnaires for assessing susceptibility to space motion sickness and their limitations are discussed. We conclude that space motion sickness does represent a form of motion sickness and that it does not represent a unique diagnostic entity. Motion sickness arises when movements are made during exposure to unusual force backgrounds both higher and lower in magnitude than 1 g earth gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Amatomi M, Kajiyama S (1970) Genetical and developmental aspects of susceptibility to motion sickness and frost bite. Hum Hered 30:507

    Google Scholar 

  • Albery WB, Martin ET (1996) Development of space motion sickness in a ground-based human centrifuge. Acta Astronaut 38:721–731

    Article  PubMed  CAS  Google Scholar 

  • Alexander SJ, Cotzin M, Hill CJ, Ricciuti EA, Wendt GR (1955) Studies of motion sickness. X. Experimental proof that aviation cadets tell the truth on motion sickness history questionnaires. J Psychol 39:403–409

    Google Scholar 

  • Badeer HS (1998) Anatomical position of heart in snakes with vertical orientation: a new hypothesis. Comp Biochem Physiol A Mol Integr Physiol 119(1):403–405

    Article  PubMed  CAS  Google Scholar 

  • Bagian JP (1991) First intramuscular administration in the U.S. Space Program. J Clin Pharmacol 31(10):920

    PubMed  CAS  Google Scholar 

  • Bagian JP, Ward DF (1994) A retrospective study of promethazine and its failure to produce the expected incidence of sedation during space flight. J Clin Pharmacol 34:649–651

    PubMed  CAS  Google Scholar 

  • Bakwin H (1971) Car-sickness in twins. Dev Med Child Neurol 13:310

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD (1999) Vestibular autonomic regulation (including motion sickness and the mechanisms of vomiting). Curr Opin Neurol 12:29–33

    Article  PubMed  CAS  Google Scholar 

  • Baloh RW, Honrubia V (1990) Clinical neurophysiology of the vestibular system. Contemporary neurology series 2nd edn. FA Davis Co, Philadelphia

  • von Baumgarten RJ (1986) European vestibular experiments on the Spacelab-1 mission: 1. Overview Exp Brain Res 64:239–246

    Article  Google Scholar 

  • von Baumgarten RJ (1987) General remarks on the role of the vestibular system in weightlessness. Arch Otorhinolaryngol 244:135–142

    Article  Google Scholar 

  • von Baumgarten RJ, Thumler R (1979) A model for vestibular function in altered gravitational states. Life Sci Space Res 17:161–170

    Google Scholar 

  • von Baumgarten RJ, Vogel H, Kass JR (1981) Nauseogenic properties of various dynamic and static force environments. Acta Astronaut 8:1005–1013

    Article  Google Scholar 

  • Bles W (1998) Coriolis effects and motion sickness modeling. Brain Res Bull 47(5):543–549

    Article  PubMed  CAS  Google Scholar 

  • Bles W, de Jong HAA, Oosterveld WJ (1984) Prediction of seasickness susceptibility. AGARD Conf Proc 372:27

    Google Scholar 

  • Bles W, de Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulation space motion sickness. J Gravit Physiol 4(2):p1–p4

    PubMed  CAS  Google Scholar 

  • Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47(5):481–487

    Article  PubMed  CAS  Google Scholar 

  • Bos JE, Bles W (1998) Modeling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542

    Article  PubMed  CAS  Google Scholar 

  • Bryan A, Ventura J, Bortolami SB, DiZio P, Lackner JR (2004) Localization of subjective vertical and head midline in altered gravitoinertial force environments. Soc Neurosci Abst

  • Cheung B, Hofer K (1998) Lack of gender difference in motion sickness induced by vestibular Coriolis cross-coupling. J Vestib Res 12(4):191–200

    Google Scholar 

  • Cheung B, Vaitkus P (1998) Perspectives of electrogastrography and motion sickness. Brain Res Bull 47(5):421–431

    Article  PubMed  CAS  Google Scholar 

  • Cheung BSK, Money KE, Jacobs I (1990) Motion sickness susceptibility and aerobic fitness: a longitudinal study. Aviat Space Environ Med 61:210–204

    Google Scholar 

  • Cheung BS, Howard IP, Money KE (1991) Visually induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62(6):527–531

    PubMed  CAS  Google Scholar 

  • Cheung B, Heskin R, Hofer K, Gagnon M (2001) The menstrual cycle and susceptibility to Coriolis-induced sickness. J Vestib Res 11(2):129–136

    PubMed  CAS  Google Scholar 

  • Clemes SA, Howarth PA (2005) The menstrual cycle and susceptibility to virtual simulation sickness. J Biol Rhythms 20(1):71–82

    Article  PubMed  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optkinetic afternystagmus. J Physiol Lond 270:321–344

    PubMed  CAS  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376

    Article  PubMed  Google Scholar 

  • Correia MJ, Hixon WC, Niven JI (1968) On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol Suppl 230:3–20

    Google Scholar 

  • Costa F, Lavin P, Robertson D, Biaggioni I (1995) Effect of neurovestibular stimulation on autonomic regulation. Clin Auton Res 5(5):289–293

    Article  PubMed  CAS  Google Scholar 

  • Cowings PS, Toscano WB (1982) The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression. Aviat Space Environ Med 53(6):570–575

    PubMed  CAS  Google Scholar 

  • Cowings IS, Toscano WB (2000) Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J Clin Pharmacol 40:1154–1165

    PubMed  CAS  Google Scholar 

  • Cowings PS, Billingham J, Toscano B (1977) Learned control of autonomic responses to compensate for the debilitating effects of motion sickness. Theory Psychosom Med 4:318–323

    Google Scholar 

  • Cowings PS, Suter S, Toscano WB, Kamiya J, Naifeh K (1986) General autonomic components of motion sickness. Psychophysiology 3:542

    Google Scholar 

  • Cowings PS, Naifeh KH, Toscano WB (1995) The stability of individual patterns of autonomic response to motion sickness stimulation. Aviat Space Environ Med 61:399–405

    Google Scholar 

  • Cowings PS, Toscano WB, DeRoshia C, Miller NE (2000) Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat Space Environ Med 71:1013–1022

    PubMed  CAS  Google Scholar 

  • Cramer DB, Graybiel A, Oosterveld WI (1976) Successful transfer of adaptation acquired in a slow rotation room to motion environments in Navy flight training. In: AGARD CP-203, C2-1, Recent advances in space medicine

  • Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151:173–189

    Article  PubMed  Google Scholar 

  • Dai M, Raphan T, Cohen B (2006) Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 171:262–271

    Article  PubMed  CAS  Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59(12):1185–1189

    PubMed  CAS  Google Scholar 

  • Davis JR, Jennings RT, Beck BG, Bagian JP (1993a) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64:230–233

    CAS  Google Scholar 

  • Davis JR, Jennings RT, Beck BG (1993b) Comparison of treatment strategies for space motion sickness. Acta Astronaut 29:587–591

    Article  CAS  Google Scholar 

  • de Graaf B, Bles W, Bos JE (1998) Roll motion stimuli: sensory conflict, perceptual weighting and motion sickness. Brain Res Bull 47(5):489–495

    Article  PubMed  Google Scholar 

  • de Wit G (1953) Seasickness. J Am Med Assoc 86:319–324

    Google Scholar 

  • Diamond SG, Markham CH (1988) Ocular torsion in upright and tilted positions during hypo- and hypergravity of parabolic flight. Aviat Space Environ Med 59:1158–1162

    PubMed  CAS  Google Scholar 

  • Diamond SG, Markham CH (1991a) Otolith function in hypo- and hypergravity: relation to space motion sickness. Acta Otolaryngol Suppl (Stockh) 418:19–22

    Article  Google Scholar 

  • Diamond SG, Markham CH (1991b) Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med 62:201–205

    CAS  Google Scholar 

  • Diamond SG, Markham CH (1992) Validating the hypothesis of otolith asymmetry as a cause of space motion sickness. Ann N Y Acad Sci 656:725–731

    PubMed  CAS  Google Scholar 

  • Diamond SG, Markham CH, Money KE (1990) Instability of ocular torsion in zero gravity: possible implications for space motion sickness. Aviat Space Environ Med 61:899–905

    PubMed  CAS  Google Scholar 

  • DiZio P, Lackner JR (1988) The effects of gravitoinertial force level and head movements on post-rotational nystagmus and illusory after-rotation. Exp Brain Res 70:485–495

    Article  PubMed  CAS  Google Scholar 

  • DiZio P, Lackner JR (1991) Motion sickness susceptibility in parabolic flight and velocity storage activity. Aviat Space Environ Med 62:300–307

    PubMed  CAS  Google Scholar 

  • DiZio P, Lackner JR (2000) Motion sickness side effects and after-effects of immersive virtual environments created with helmet-mounted visual displays. In: NATO RTO-MP-54, The capability of virtual reality to meet military requirements, pp 11-1–11-4

  • DiZio P, Lackner JR (2002) Proprioceptive adaptation and after-effects. In: Stanney K (ed) Handbook of virtual environments. Lawrence Erlbaum Associates, NY, pp 751–771

    Google Scholar 

  • DiZio P, Lackner JR, Evanoff JN (1987a) The influence of gravitointertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation. Aviat Space Environ Med 58:A218–A223

    CAS  Google Scholar 

  • DiZio P, Lackner JR, Evanoff JN (1987b) The influence of gravitoinertial force level on oculomotor and perceptual responses to sudden-stop stimulation. Aviat Space Environ Med 58:A224–A230

    CAS  Google Scholar 

  • Dobie TG (1974) Airsickness in aircrew. AGARDograph No. 177. Technical Editing and Reproduction Ltd, London

    Google Scholar 

  • Doweck I, Gordon CR, Shlitner A, Spitzer O, Gonen A, Binah O, Melamed Y, Shupak A (1997) Alterations in R-R variability associated with experimental motion sickness. J Auton Nerv Syst 67:31–37

    Article  PubMed  CAS  Google Scholar 

  • Egorov BB, Samarin GI (1970) Possible changes in paired working of the vestibular system during weightlessness. Kosm Biol Med 4(2):85–86

    Google Scholar 

  • Golding JF, Stott JR (1995) Effect of sickness severity on habituation to repeated motion challenges in aircrew referred for air sickness treatment. Aviat Space Environ Med 66:625–630

    PubMed  CAS  Google Scholar 

  • Golding JF, Stott JR (1997a) Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 43:633–637

    Article  CAS  Google Scholar 

  • Golding JF, Stott JR (1997b) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7(6):421–428

    Article  CAS  Google Scholar 

  • Golding JF, Kadzere P, Gresty MA (2005) Motion sickness susceptibility fluctuates through the menstral cycle. Aviat Space Environ Med 76(10):970–973

    PubMed  Google Scholar 

  • Gordon CR, Ben-Aryeh H, Szargel R, Attias J (1989) Salivary changes associated with seasickness. J Auton Nerv Syst 26:37

    Article  PubMed  CAS  Google Scholar 

  • Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H (2004) Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 44(8):837–853

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A (1969) Structural elements in the concept of motion sickness. Aerosp Med 40:351–367

    PubMed  CAS  Google Scholar 

  • Graybiel A (1974) Measurement of otolith function in man. In: Kornhuber HH (ed) Handbook of sensory physiology, chap 11. Springer, Berlin Heidelberg New York, pp 233–266

  • Graybiel A (1980) Space motion sickness: Skylab revisited. Aviat Space Environ Med 51:814

    PubMed  CAS  Google Scholar 

  • Graybiel A, Johnson WH (1963) A comparison of the symptomatology experienced by healthy persons and subjects with loss of labyrinthine function when exposed to unusual patterns of centripetal force in a counter-rotating room. Ann Otorhinolaryngol 72:1–17

    Google Scholar 

  • Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47(8):873–882

    PubMed  CAS  Google Scholar 

  • Graybiel A, Lackner JR (1977) Comparison of susceptibility to motion sickness during rotation at 30 rpm in the earth-horizontal, 10° head-up, and 10° head-down positions. Aviat Space Environ Med 48:7–11

    PubMed  CAS  Google Scholar 

  • Graybiel A, Lackner JR (1979) Rotation at 30 rpm about the z-axis after 6 hours in the 10° head-down position: effect on susceptibility to motion sickness. Aviat Space Environ Med 50:390–392

    PubMed  CAS  Google Scholar 

  • Graybiel A, Lackner JR (1980a) A sudden-stop vestibulovisual test for rapid assessment of motion sickness manifestations. Aviat Space Environ Med 51:21–23

    CAS  Google Scholar 

  • Graybiel A, Lackner JR (1980b) Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature. Aviat Space Environ Med 51:211–214

    CAS  Google Scholar 

  • Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58:773–776

    PubMed  CAS  Google Scholar 

  • Graybiel A, Niven JI (1953) The absence of residual effects attributable to the otolith organs following unilateral labyrinthectomy in man. Laryngoscope 63:18–30

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A, Wood C, Miller E, Cramer D (1968) Diagnostic criteria for grading the severity of acute motion sickness. Bureau of Medicine and Surgery, NASA Order R93, Pensacola, FL, Naval Aerospace Institute

  • Graybiel A, Deane FR, Colehour JK (1969) Prevention of overt motion sickness by incremental exposure to otherwise highly stressful Coriolis accelerations. Aerosp Med 40:142–148

    PubMed  CAS  Google Scholar 

  • Graybiel A, Miller EF II, Homick JL (1972) Experiment M131: human vestibular function. In: Proceedings of the Skylab life sciences symposium, NASA TMX-58154, vol I

  • Graybiel A, Miller EF II, Homick JL (1975) Individual difference in susceptibility to motion sickness among six Skylab astronauts. Acta Astronaut 2:155–174

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A, Miller EF II, Homick JL (1977) Experiment M131: human vestibular function. In: Biomedical results for Skylab, NASA SP-377, US Govt Print Office, pp 74–103

  • Groen JJ (1957) Adaptation. Pract Otorhinolaryngol 19:525–530

    Google Scholar 

  • Grunfeld E, Gresty MA (1998) Relationship between motion sickness, migraine and menstruation in crew members of a “round the world” yacht race. Brain Res Bull 47(5):433–436

    Article  PubMed  CAS  Google Scholar 

  • Guignard JC, McCauley ME (1990) The accelerative stimulus for motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, West Palm Beach, pp 123–151

    Google Scholar 

  • Gurovskiy NN, Bryanov II, Yegorov AD (1975) Changes in vestibular function during space flight. Acta Astonaut 2(3–4):207–216

    Article  CAS  Google Scholar 

  • Hardacre LE, Kennedy RS (1965) Some issues in the development of a motion sickness questionnaire for flight students. Bur Med Surg, Proj MR005 13-6002, Subtask 1, Report No. 104, USN School Aviation Medicine, Pensacola

  • Harm DL (1990) Physiology of motion sickness symptoms. In: Crampton GH (ed) Motion and space motion sickness, CRC Press, West Palm Beach, pp 153–177

    Google Scholar 

  • Harm DL, Parker DE (1994) Preflight adaptation training for spatial orientation and space motion sickness. J Clin Pharmacol 34(6):618–627

    PubMed  CAS  Google Scholar 

  • Harm DL, Schlegel TT (2002) Predicting motion sickness during parabolic flight. Autonomic Neurosci 97:116–121

    Article  Google Scholar 

  • Homick JL, Reshke MF, Vanderploeg JM (1984) Space adaptation syndrome: incidence and operational implications for the space transportation system program. In: Motion sickness: mechanisms, prediction, prevention and treatment, AGARD conference proceeding no. 372, Neuilly sur Seine, France, 36–1

  • Hu S, Stern RM (1998) Optokinetic nystagmus correlates with severity of vection-induced motion sickness and gastric tachyarrhythmia. Aviat Space Environ Med 69:1162–1165

    PubMed  CAS  Google Scholar 

  • Hu S, McChesney KA, Player KA, Bahl AM, Buchanan JB, Scozzafava JE (1999) Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviat Space Environ Med 70(8):759–765

    PubMed  CAS  Google Scholar 

  • Jennings RT (1998) Managing space motion sickness. J Vestib Res 8:67–70

    Article  PubMed  CAS  Google Scholar 

  • Johnson WH (1974) Motion sickness, Part 1. Etiology and autonomic effects. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York

  • Johnson WH, Sunahara FA, Landolt JP (1993) Motion sickness, vascular changes accompanying pseudo-Coriolis-induced nausea. Aviat Space Environ Med 64:367–370

    PubMed  CAS  Google Scholar 

  • Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9(2):83–87

    PubMed  CAS  Google Scholar 

  • Jozsvai EE, Pigeau RA (1996) The effects of autogenic training and biofeedback on motion sickness tolerance. Aviat Space Environ Med 67:963–968

    PubMed  CAS  Google Scholar 

  • Kakurin LI, Kuzmin MP, Matsnev EI, Mikhailov VM (1976) Physiological effects induced by antiorthostatic hypokinesia. Life Sci Space Res 14:101–108

    PubMed  CAS  Google Scholar 

  • Kaufman GD, Wood SJ, Gianna CC, Black FO, Paloski WH (2001) Spatial orientation and balance control changes induced by altered gravitoinertial force vectors. Exp Brain Res 137:397–410

    Article  PubMed  CAS  Google Scholar 

  • Kiernan BD, Soykan I, Lin Z, Dale A, McCallum RW (1997) A new nausea model in humans produces mild nausea without electrogastrogram and vasopressin changes. Neurogastroenterol Motil 9(4):257–263

    Article  PubMed  CAS  Google Scholar 

  • Koch KL (1993) Motion sickness. In: Sleisenger MH (ed) Handbook of nausea and vomiting. Parthenon, NY

    Google Scholar 

  • Koch KL (1999) Illusory self-motion and motion sickness: a model for brain-gut interactions and nausea. Dig Dis Sci 44(8 Suppl):53S–57S

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1989) Altered sensorimotor control of the head as an etiological factor in space motion sickness. Percept Mot Skills 8:784–786

    Google Scholar 

  • Lackner JR, DiZio P (2000a) Aspects of body self-calibration. Trends Cogn Sci 4:279–288

    Article  CAS  Google Scholar 

  • Lackner JR, DiZio P (2000b) Artificial gravity as a countermeasure in long duration space flight. J Neurosci Res 62:169–176

    Article  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1984) Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers. Aviat Space Environ Med 55:513-520

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1985) Head movements elicit motion sickness during exposure to microgravity and macrogravity acceleration levels. In: Igarashi M, Black FO (eds) Proceedings of the VII international symposium: vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp 170-176

    Google Scholar 

  • Lackner JR, Graybiel A (1986a) The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent: implications for space motion sickness. Aviat Space Environ Med 57:229-235

    CAS  Google Scholar 

  • Lackner JR, Graybiel A (1986b) Sudden emesis following parabolic flight maneuvers: implications for space motion sickness. Aviat Space Environ Med 57:343-347

    CAS  Google Scholar 

  • Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648

    PubMed  CAS  Google Scholar 

  • Lackner JR, Teixeira R (1977) Optokinetic motion sickness: continuous head movements attenuate the visual induction of apparent self-rotation and symptoms of motion sickness. Aviat Space Environ Med 48:248-253

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A, Johnson WH, Money KE (1987) Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level. Aviat Space Environ Med 58:652–657

    PubMed  CAS  Google Scholar 

  • Lackner JR, Ventura J, DiZio P (2006) Dynamic spatial orientation in altered gravitoinertial force environments. Soc Neurosci Abst 244.11

    Google Scholar 

  • Lang IM (1992) New perspectives on the mechanisms controlling vomitus expulsion. In: Bianchi AL, Grelot L, Milelr AD, King GL (eds) Mechanisms and control of emesis, vol 223. Colloque INSERM/John Libbey Eurotext Montrouge, France

  • Lang IM (1999) Noxious stimulation of emesis. Dig Dis Sci 44(8 Suppl):58S–63S

    PubMed  CAS  Google Scholar 

  • Lawson BD (1993) Physiological responses to visually-induced motion sickness. Brandeis University PhD dissertation, Waltham, MA

  • Lentz JM (1976) Nystagmus, turning sensations, and illusory movement in motion sickness susceptibility. Aviat Space Environ Med 47(9):931–936

    PubMed  CAS  Google Scholar 

  • Lentz JM, Collins WE (1977) Motion sickness susceptibility and related behavioral characteristics in men and women. Aviat Space Environ Med 48(4):316–322

    PubMed  CAS  Google Scholar 

  • Lillywhite HB (1996) Gravity, blood circulation, and the adaptation of form and function in lower vertebrates. J Exp Zool 275:217–225

    Article  PubMed  CAS  Google Scholar 

  • Lucot JB (1998) Pharamcology of motion sickness. J Vestib Res 8:61–66

    Article  PubMed  CAS  Google Scholar 

  • Markham CH, Diamond SG (1992) Further evidence to support disconjugate eye torsion as a predictor of space motion sickness. Aviat Space Environ Med 63:118–121

    PubMed  CAS  Google Scholar 

  • Markham CH, Diamond SG (1993) A predictive test for space motion sickness. J Vestib Res 3(3):289–295

    PubMed  CAS  Google Scholar 

  • Markham CH, Diamond SG, Stoller DF (2000) Parabolic flight reveals independent binocular control of otolith-induced eye torsion. Arch Ital de Biol 138:736–86

    Google Scholar 

  • Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, Gorgiladze GI (1983) Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med 54:312–317

    PubMed  CAS  Google Scholar 

  • McClure JA, Fregly AR (1972) Effect of environmental temperature on sweat onset during motion sickness. Aerosp Med 43:959

    PubMed  CAS  Google Scholar 

  • Miller AD (1991) Motion-induced nausea and vomiting. In: Kucharczyk J, Steward DJ, Miller AD (eds) Nausea and vomiting: Recent Research and Clinical Advances, chap 2. CRC Press, Boca Raton

  • Miller EF II, Graybiel A (1970a) The effect of gravitoinertial force upon ocular counterrolling. J Appl Phsyiol 31:697–700

    Google Scholar 

  • Miller EF II, Graybiel A (1970b) A provocative test for grading susceptibility to motion sickness yielding a single numerical score. Acta Otolaryngol Stockh Suppl 274

  • Miller EF II, Graybiel A (1972) The semicircular canals as a primary etiological factor in motion sickness. Aerosp Med 43:1065–1074

    PubMed  Google Scholar 

  • Miller EF II, Graybiel A (1974) Human ocular counterrolling measured during eight hours of sustained body tilt. Minerva Otorhinolaryngol 24:274–252

    Google Scholar 

  • Miller AD, Grelot L (1996) The neural basis of nausea and vomiting. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton

    Google Scholar 

  • Miller AD, Leslie RA (1994) The area postrema and vomiting, Front Neuroendocrinol 15:301

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Wilson VJ (1984) Neurophysiological correlates of motion sickness: role of vestibulocerebellum and “vomiting center” reanalyzed. AGARD Conf Proc 372:21

    Google Scholar 

  • Miller EF II, Graybiel A, Kellogg RS (1965) Otolith organ activity within Earth standard, one-half standard and zero gravity environment. Aerosp Med 37:399–403

    Google Scholar 

  • Money KE (1970) Motion sickness. Physiol Rev 50:1–39

    PubMed  CAS  Google Scholar 

  • Money KE (1990) Motion sickness and evolution. In: Crampton GH (ed) Motion and space sickness, chap 1. CRC Press, Boca Raton

  • Money KE, Cheung B (1983) Another function of the inner ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54:208

    PubMed  CAS  Google Scholar 

  • Money KE, Watt DG, Oman CM (1984) Preflight and postflight motion sickness testing of the Spacelab 1 crew. In: AGARD conference proceedings no. 372, Motion sickness: mechanisms, prediction, prevention and treatment, p 33-1-8

  • Money KE, Lackner JR, Cheung RSK (1996) The autonomic nervous system and motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 147–173

    Google Scholar 

  • Montgomery LD, Parmet AJ, Booher CR (1993) Body volume changes during simulated microgravity: auditory changes, segmental fluid redistribution, and regional hemodynamics. Ann Biomed Eng 21(4):417–433

    Article  PubMed  CAS  Google Scholar 

  • Moore TP, Thornton WE (1987) Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med 58(9)Pt2:A91–A96

    PubMed  CAS  Google Scholar 

  • Mullen TJ, Berger RD, Oman CM, Cohen RJ (1998) Human heart rate variability relation is unchanged during motion sickness. J Vestib Res 8:95–105

    Article  PubMed  CAS  Google Scholar 

  • Nicogossian AE, Uri JJ (1994) Vehicles for human space flight. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space Physiology and Medicine, 3rd edn. Lea and Febiger, Philadelphia, pp 81–108

    Google Scholar 

  • Norfleet WT, Degioanni JJ, Calkins DS, Reschke MF, Bungo MW, Kutyna FA, Homick JL (1992) Treatment of motion sickness in parabolic flight with buccal scopolamine. Aviat Space Environ Med 63:46–51

    PubMed  CAS  Google Scholar 

  • Noskov VB, Grigoriev AI (1994) Diuretic as a means for rapid adaptation to weightlessness. Acta Astronaut 32:841–843

    Article  PubMed  CAS  Google Scholar 

  • Ockels WJ, Furrer R, Messerschmid E (1990) Simulation of space adaptation syndrome on earth. Exp Brain Res 79(3):661–663

    Article  PubMed  CAS  Google Scholar 

  • O’Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aviat Space Environ Med 45(4):366–369

    CAS  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Supp 392:1–44

    CAS  Google Scholar 

  • Oman CM (1984) Why do astronauts suffer space sickness? New Sci 103(1418):10–11

    PubMed  CAS  Google Scholar 

  • Oman CM (1987) Spacelab experiments on space motion sickness. Acta Astronaut 15(1):55–66

    Article  PubMed  CAS  Google Scholar 

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303

    PubMed  CAS  Google Scholar 

  • Oman CM (1998) Sensory conflict theory and space sickness: our changing perspective. J Vestib Res 8(1):95–105

    PubMed  Google Scholar 

  • Oman CM, Balkwill MD (1993) Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crew members. J Vestib Res 3(3):315–330

    PubMed  CAS  Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) MIT/Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64(2):316–334

    Article  PubMed  CAS  Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE (1990) Space motion sickness monitoring experiment: Spacelab 1. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 217–246

    Google Scholar 

  • Oman CM, Pouliot CF, Natapoff A (1996) Horizontal angular VOR changes in orbit and parabolic flight: human neurovestibular studies on SLS-2. J App Physiol 81(1):69–81

    CAS  Google Scholar 

  • Parker DE (1977) Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G. Aviat Space Environ Med 48(4):356–361

    PubMed  CAS  Google Scholar 

  • Parker DE, Parker KL (1990) Adaptation to the simulated stimulation rearrangement of weightlessness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 247–262

    Google Scholar 

  • Parker DE, Tjernstrom O, Ivarsson A, Gulledge WL, Poston RL (1983) Physiological and behavioral effects of tilt-induced body fluid shifts. Aviat Space Environ Med 54(5):402–409

    PubMed  CAS  Google Scholar 

  • Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight training. Aviat Space Environ Med 56:601

    PubMed  CAS  Google Scholar 

  • Patterson JL Jr, Graybiel A (1974) Acceleration, gravity, and weightlessness. In: Slonim NB (ed) Environmental physiology, chap 6. Mosby, St. Louis, pp 163–275

  • Patterson JL, Goetz RH, Doyle JT, Warren JV, Gauer OH, Detweiler DK, Said SI, Hoernicke H, McGregor M, Keen EN, Smith MH, Hardie EL, Reynolds M, Flatt WP, Waldo DR (1975) Cardiorespiratory dynamics in the ox and giraffe, with comparative observations on man and other mammals. Ann N Y Acad Sci 127:393–413

    Google Scholar 

  • Putcha L (1999) Pharmacotherapeutics in space. J Gravit Physiol 6(1):P165–P168

    PubMed  CAS  Google Scholar 

  • Putcha L, Berens KL, Marshburn TH, Ortega HJ, Billica RD (1999) Pharmaceutical use by US astronauts on space shuttle missions. Aviat Space Environ Med 70:705–708

    PubMed  CAS  Google Scholar 

  • Reason JT (1968) Relations between motion sickness susceptibility, the spiral after-effect and loudness estimation. Br J Psychol 59:385–393

    PubMed  CAS  Google Scholar 

  • Reason JT (1970) Motion sickness: a special case of sensory rearrangement. Adv Sci 26:386–393

    PubMed  CAS  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press, New York

    Google Scholar 

  • Reason JT, Graybiel A (1970) Progressive adaptation to Coriolis accelerations associated with 1 rpm increments in the velocity of the slow rotation room. Aerosp Med 41:73–79

    PubMed  CAS  Google Scholar 

  • Reschke MF (1990) Statistical prediction of space motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 263–315

    Google Scholar 

  • Reschke MF, Harm DL, Parker DE, Sandoz GR, Homick JL, Vanderploeg JM (1994) Neurophysiologic aspects: space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space physiology and medicine, 3rd edn. Lea and Febiger, Philadelphia, pp 228–260

    Google Scholar 

  • Severac A (1992) Electrical vestibular stimulation and space motion sickness. Acta Astronaut 28:401–408

    Article  PubMed  CAS  Google Scholar 

  • Simanonok KE, Charles JB (1994) Space sickness and fluid shifts: a hypothesis. J Clin Pharmacol 34(6):652–663

    PubMed  CAS  Google Scholar 

  • Staut CS, Toscano WB, Cowings PS (1995) Reliability of psychophysiological responses across multiple motion sickness stimulation tests. J Vestib Res 5:25–33

    Article  Google Scholar 

  • Stern RM, Koch KL, Leibowitz HW, Linblad IM, Shupert CL, Stewart WR (1985) Tachygastria and motion sickness. Aviat Space Environ Med 56:1074–1077

    PubMed  CAS  Google Scholar 

  • Stern RM, Koch KL, Stewart WR, Lindblad IM (1987a) Spectral analysis of tachgastria recorded during motion sickness. Gastroenterology 92:92–97

    CAS  Google Scholar 

  • Stern RM, Koch KL, Stewart WR, Vasey MW (1987b) Electrogastrography: current issues in validation and methodology. Psychophysiology 24:55

    CAS  Google Scholar 

  • Stern RM, Hu S, Vasey MW, Koch KL (1989) Adaptation to vection-induced symptoms of motion sickness. Aviat Space Environ Med 60:566–572

    PubMed  CAS  Google Scholar 

  • Stern RM, Koch KL, Vasey MW (1990) The gastrointestinal system. In: Cacioppo JT, Tassinary (eds) Principles of psychophysiology (physical, social and inferential elements). Cambridge University Press, Boston, pp 554–579

    Google Scholar 

  • Stern RM, Uijtdehaage SHJ, Muth ER, Xu LH, Koch KL (1996) Asian hypersusceptibility to motion sickness. Hum Hered 46(1):7–14

    Article  PubMed  CAS  Google Scholar 

  • Sunahara FA, Farewell J, Mintz L, Johnson WH (1987) Pharmacological interventions for motion sickness: cardiovascular effects. Aviat Space Environ Med 58(9Suppl):A270–A276

    PubMed  CAS  Google Scholar 

  • Teixeira RA, Lackner JR (1979) Optokinetic motion sickness: attenuation of visually-induced apparent self-rotation by passive head movements. Aviat Space Environ Med 50:264-266

    PubMed  CAS  Google Scholar 

  • Thornton WE, Moore TP, Pool SL (1987a) Fluid shifts in weightlessness. Aviat Space Environ Med 58(9)Pt2: A986–A980

    Google Scholar 

  • Thornton WE, Moore TP, Pool SL, Vanderploeg J (1987b) Clinical characterization and etiology of space motion sickness. Aviat Space Environ Med 58:A1–A8

    CAS  Google Scholar 

  • Thornton WE, Linder BJ, Moore TP, Pool SL (1987c) Gastrointestinal motility in space motion sickness. Aviat Space Environ Med 58:A16–21

    CAS  Google Scholar 

  • Titov G, Caidin M (1962) I am eagle. Bobbs Merrill, Indianapolis

    Google Scholar 

  • Toscano WB, Cowings PS (1982) Reducing motion sickness: a comparison of autogenic-feedback training and an alternative cognitive task. Aviat Space Environ Med 53(5):449–453

    PubMed  CAS  Google Scholar 

  • Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Griffin MJ (1995) Motion sickness incidence during a round-the-world yacht race. Avait Space Environ Med 66(9):849–856

    CAS  Google Scholar 

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    PubMed  CAS  Google Scholar 

  • Van Citters RL, Kemper WS, Franklin DL (1968) Blood flow and pressure in the giraffe carotid artery. Comp Biochem Physiol 24:1035–1042

    Article  PubMed  Google Scholar 

  • Wendt GR (1948) Of what importance are psychological factors in motion sickness? J Aviat Med 19:24–33

    PubMed  CAS  Google Scholar 

  • Williams DR (2003) The biomedical challenges of space flight. Ann Rev Med 54:245–256

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, NY

    Google Scholar 

  • Wood CD, Graybiel A (1968) Evaluation of sixteen antimotion sickness drugs under controlled laboratory conditions. Aerosp Med 39:1341–1344

    PubMed  CAS  Google Scholar 

  • Wood CD, Stewart JJ, Wood MJ, Manno JE, Manno BR, Mims ME (1990) Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviat Space Environ Med 61:157–161

    PubMed  CAS  Google Scholar 

  • Woodman PD, Griffin MJ (1997) Effect of direction of head movement on motion sickness caused by Coriolis stimulation. Aviat Space Environ Med 68:93–98

    PubMed  CAS  Google Scholar 

  • Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual and actual-inertial stimulation: more than weighted summation of sensory inputs. J Vestib Res 16:23–28

    Google Scholar 

  • Yates BJ (1996) Vestibular influences on the autonomic nervous system. Ann N Y Acad Sci 781:458–473

    PubMed  CAS  Google Scholar 

  • Yates BJ (1998) Autonomic reaction to vestibular damage. Otolaryngol Head Neck Surg 119:106–112

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ (2004) The vestibular system and cardiovascular responses to altered gravity. Am J Physiol 286(1):R22

    CAS  Google Scholar 

  • Yates BJ, Miller AD (1996) Vestibular autonomic regulation. CRC Press, Boca Raton

    Google Scholar 

  • Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev 28:73–82

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15(3):119–129

    PubMed  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47(5):395–406

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Aoki M, Burchill P, Bronstein AM, Gresty MA (1999) Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125:476–484

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Holmes MJ, Jian BJ (2000) Adaptive plasticity in vestibular influences on cardiovascular control. Brain Res Bull 53(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Billig I, Cotter LA (2002) Role of the vestibular system in regulating respiratory muscle activity during movement. Clin Exp Pharmacol Physiol 29(1, 2):112–117

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Holmes MJ, Jian BJ (2003) Plastic changes in processing of graviceptive signals during spaceflight potentially contribute to post-flight orthostatic intolerance. J Vestib Res 13(4–6):395–404

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support was provided by AFOSR grant FA9550-06-1-0102; NASA grants NAG9-1483; and NAG9-1466; NSBRI grant NA00701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lackner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lackner, J.R., DiZio, P. Space motion sickness. Exp Brain Res 175, 377–399 (2006). https://doi.org/10.1007/s00221-006-0697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0697-y

Keywords

Navigation