Abstract
This chapter surveys key concepts in convex duality theory and their application to the analysis and numerical solution of problem archetypes in imaging. Convex analysis, Variational analysis, Duality
Keywords
- Convex Analysis Approach
- Fenchel Conjugate
- Fenchel Duality
- Linear Inverse Problems
- Sandwich Theorem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options

References
Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15(2), 345–348 (2008)
Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)
Aubert, G., Kornprost, P.: Mathematical Problems Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)
Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm and Fienup variants: a view from convex feasibility. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: A hybrid projection reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)
Bauschke, H.H., Cruz, J.Y., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle (2013). Preprint. arXiv:1309.4709v1 [math.OC]
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013)
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found Comput. Math. 14(1), 63–83 (2014)
Bauscke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. (in press). doi:10.1007/510013-013-0049-8
Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)
Beck, A., Teboulle, M.: A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, pp. 33–48. Springer, New York (2011)
Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A ℓ 1-unified variational framework for image restoration. In: Pajdla, T., Matas, J. (eds.) Proceedings of the Eighth European Conference on Computer Vision, Prague, 2004. Lecture Notes in Computer Science, vol. 3024, pp. 1–13. Springer, New York (2004)
Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimensional l p spectral estimation problems. SIAM J. Contr. Optim. 26, 985–996 (1988)
Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harm. Anal. 27, 265–274 (2009)
Blumensath, T., Davies, M.E.: Normalised iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sign. Process. 4, 298–309 (2010)
Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Borwein, J.M.: On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems. Math. Program 61, 251–261 (1993)
Borwein, J.M., Hamilton, C.: Symbolic fenchel conjugation. Math. Program 116, 17–35 (2009)
Borwein, J.M., Jon Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedias in Mathematics, vol. 109. Cambridge University Press, New York (2009)
Borwein, J.M., Lewis, A.S.: Duality relationships for entropy-like minimization problems. SIAM J. Contr. Optim. 29, 325–338 (1990)
Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optim. 1, 191–205 (1991)
Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)
Borwein, J.M., Luke, D.R.: Entropic regularization of the ℓ 0 function. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 65–92. Springer, Berlin (2011)
Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 93–109. Springer, Berlin (2011)
Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0381-x
Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)
Borwein, J.M., Zhu, Q.J.: Variational methods in the presence of symmetry. Adv. Nonlinear Anal. 2(3), 271–307 (2013)
Borwein, J.M., Lewis, A.S., Limber, M.N., Noll, D.: Maximum entropy spectral analysis using first order information. Part 2: a numerical algorithm for fisher information duality. Numer. Math. 69, 243–256 (1995)
Borwein, J.M., Lewis, A.S., Noll, D.: Maximum entropy spectral analysis using first order information. Part 1: fisher information and convex duality. Math. Oper. Res. 21, 442–468 (1996)
Boyd, S., Vandenberghe, L.: Convex Optimization. Oxford University Press, New York (2003)
Brezhneva, O.A., Tret’yakov, A.A., Wright, S.E.: A simple and elementary proof of the Karush–Kuhn–Tucker theorem for inequality-constrained optimization. Optim. Lett. 3, 7–10 (2009)
Burg, J.P.: Maximum entropy spectral analysis. Paper presented at the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City (1967)
Burke, J.V., Luke, D.R.: Variational analysis applied to the problem of optical phase retrieval. SIAM J. Contr. Optim. 42(2), 576–595 (2003)
Byrne, C.L.: Signal Processing: A Mathematical Approach. AK Peters, Natick (2005)
Candés, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)
Candés, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)
Censor, Y., Zenios, S.A.: Parallel Optimization: Theory Algorithms and Applications. Oxford University Press, Oxford (1997)
Chambolle, A.: An algorithm for total variation minimization and applications. J Math. Imaging Vis. 20, 89–97 (2004)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)
Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal–dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)
Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Convex and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, New York (2012)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, Philadelphia (1990)
Clarke, F.H., Stern, R.J., Ledyaev, Yu.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)
Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp 155–270. Academic, New York (1996)
Combettes, P.L., Pesquet, J.-C.: Proximal splitting method in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 185–212. Springer, Berlin (2011)
Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67(3), 487–507 (1990)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. SIAM J. Multiscale Model. Simulat. 4(4), 1168–1200 (2005)
Combettes, P.L., D\(\tilde{\mbox{u}}\)ng, D., V\(\tilde{\mbox{u}}\), B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)
Dacunha-Castelle, D., Gamboa, F.: Maximum d’entropie et probléme des moments. l’Institut Henri Poincaré 26, 567–596 (1990)
Destuynder, P., Jaoua, M., Sellami, H.: A dual algorithm for denoising and preserving edges in image processing. J. Inverse Ill-Posed Prob. 15, 149–165 (2007)
Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
Eggermont, P.P.B.: Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24(6), 1557–1576 (1993)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Elsevier, New York (1976)
Fenchel, W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949)
Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)
Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–428 (1986)
Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS 371, pp. 96–110. Springer-Verlag, Heidelberg (2008)
Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Bostan (1984)
Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in Mathematics, vol. 1894. Springer, New York (2007)
Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). Preprint. arXiv:1212.3349v2 [math.OC]
Hesse, R., Luke, D.R., Neumann, P.: Projection Methods for Sparse Affine Feasibility: Results and Counterexamples (2013). Preprint. arXiv:1307.2009 [math.OC]
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)
Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, I and II. Grundlehren der mathematischen Wissenschaften, vols. 305–306. Springer, New York (1993)
Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren der mathematischen Wissenschaften. Springer, New York (2001)
Iusem, A.N., Teboulle, M.: A regularized dual-based iterative method for a class of image reconstruction problems. Inverse Probl. 9, 679–696 (1993)
Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and its Applications, vol. 36. Oxford University Press, New York (2008)
Klee, V.: Convexity of Cebysev sets. Math. Ann. 142, 291–304 (1961)
Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)
Levi, L.: Fitting a bandlimited signal to given points. IEEE Trans. Inform. Theory 11, 372–376 (1965)
Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)
Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)
Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics, vol. 22. Springer, New York (2006)
Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Alg. 16(2), 171–185 (1997)
Lucet, Y.: Fast Moreau envelope computation I: numerical algorithms. Numer. Alg. 43(3), 235–249 (2006)
Lucet, Y.: Hybrid symbolic-numeric algorithms for computational convex analysis. Proc. Appl. Math. Mech. 7(1), 1062301–1062302 (2007)
Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20(1), 216–250 (2009)
Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear quadratic model for computational convex anlysis. Comput. Optim. Appl. 43(1), 95–11 (2009)
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)
Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005)
Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)
Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)
Maréchal, P., Lannes, A. (1997) Unification of some deterministic and probabilistic methods for the solution of inverse problems via the principle of maximum entropy on the mean. Inverse Probl. 13, 135–151 (1962)
Mattingley, J., Body, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng. 13, 1–27 (2012)
Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)
Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus de l’Académie des Sciences de Paris 255, 2897–2899 (1962)
Moreau, J.J.: Proximité et dualité dans un espace Hilbertian. Bull de la Soc math de France 93(3), 273–299 (1965)
Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)
Patrinos, P., Sarimveis, H.: Convex parametric piecewise quadratic optimization: theory and algorithms. Automatica 47, 1770–1777 (2011)
Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, New York (1993)
Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Contr. Opt. 31(4), 1080–1092 (1993)
Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Pure and Applied Mathematics, vol. 4. Marcel Dekker, New York (1971). Translated from Russian by Karol Makowski. Translation edited by Lucien W. Neustadt
Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)
Rockafellar, R.T.: Integrals which are convex functionals, II. Pacific J. Math. 39, 439–469 (1971)
Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)
Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)
Simons, S.: From Hahn–Banach to Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, New York (2008)
Singer, I.: Duality for Nonconvex Approximation and Optimization. Springer, New York (2006)
Teboulle, M., Vajda, I.: Convergence of best φ-entropy estimates. IEEE Trans. Inform. Process. 39, 279–301 (1993)
Tihonov, A.N.: On the regularization of ill-posed problems (Russian). Dokl. Akad. Nauk. SSSR 153, 49–52 (1963)
Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)
Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)
Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)
Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)
Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)
Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp 237–424. Academic, New York (1971)
Acknowledgements
D. Russell Luke’s work was supported in part by NSF grants DMS-0712796 and DMS-0852454. Work on the second edition was supported by DFG grant SFB755TPC2. The authors wish to thank Matthew Tam for his assistance in preparing a revision for the second edition of the handbook.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this entry
Cite this entry
Borwein, J.M., Luke, D.R. (2015). Duality and Convex Programming. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0790-8_7
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-0789-2
Online ISBN: 978-1-4939-0790-8
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering