Advertisement

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Inverse Problems – Methods

    1. Front Matter
      Pages 1-1
    2. Charles Groetsch
      Pages 3-46
    3. Julianne Chung, Sarah Knepper, James G. Nagy
      Pages 47-90
    4. Jin Cheng, Bernd Hofmann
      Pages 91-123
    5. Christiane Pöschl, Otmar Scherzer
      Pages 125-155
    6. Mila Nikolova
      Pages 157-204
    7. Massimo Fornasier, Holger Rauhut
      Pages 205-256
    8. Jonathan M. Borwein, D. Russell Luke
      Pages 257-304
    9. Charles Byrne, Paul P. B. Eggermont
      Pages 305-388
    10. Martin Burger, Barbara Kaltenbacher, Andreas Neubauer
      Pages 431-470
    11. Oliver Dorn, Dominique Lesselier
      Pages 471-532
  3. Inverse Problems – Case Examples

    1. Front Matter
      Pages 533-533
    2. Habib Ammari, Hyeonbae Kang
      Pages 535-590
    3. Martin Hanke-Bourgeois, Andreas Kirsch
      Pages 591-647
    4. David Colton, Rainer Kress
      Pages 649-700
    5. Andy Adler, Romina Gaburro, William Lionheart
      Pages 701-762
    6. Margaret Cheney, Brett Borden
      Pages 763-799
    7. Gabor T. Herman
      Pages 801-845
    8. Venkateswaran P. Krishnan, Eric Todd Quinto
      Pages 847-902
    9. Athanasios S. Fokas, George A. Kastis
      Pages 903-936
    10. Ozan Öktem
      Pages 937-1031
    11. Simon R. Arridge, Jari P. Kaipio, Ville Kolehmainen, Tanja Tarvainen
      Pages 1033-1079
    12. Peter Kuchment, Leonid Kunyansky
      Pages 1117-1167
    13. Peter Elbau, Leonidas Mindrinos, Otmar Scherzer
      Pages 1169-1204
    14. Matti Lassas, Mikko Salo, Gunther Uhlmann
      Pages 1205-1252
    15. Frank Natterer
      Pages 1253-1278
    16. Liliana Borcea
      Pages 1279-1340
  4. Image Restoration and Analysis

    1. Front Matter
      Pages 1341-1341
    2. Daniela Calvetti, Erkki Somersalo
      Pages 1343-1392
    3. Gabriele Steidl
      Pages 1393-1453
    4. V. Caselles, A. Chambolle, M. Novaga
      Pages 1455-1499
    5. Raymond Chan, Tony F. Chan, Andy Yip
      Pages 1501-1537
    6. Leah Bar, Tony F. Chan, Ginmo Chung, Miyoun Jung, Luminita A. Vese, Nahum Kiryati et al.
      Pages 1539-1597
    7. Jean-Michel Morel, Antoni Buades, Tomeu Coll
      Pages 1599-1643
    8. Julie Digne, Mariella Dimiccoli, Neus Sabater, Philippe Salembier
      Pages 1645-1673
    9. Brigitte Forster
      Pages 1675-1716
    10. Ole Christensen, Hans G. Feichtinger, Stephan Paukner
      Pages 1717-1757
    11. Alain Trouvé, Laurent Younes
      Pages 1759-1817
    12. Martin Rumpf, Benedikt Wirth
      Pages 1819-1858
    13. Alexander M. Bronstein, Michael M. Bronstein
      Pages 1859-1908
    14. Florian Becker, Stefania Petra, Christoph Schnörr
      Pages 1945-2004
    15. Lars Ruthotto, Jan Modersitzki
      Pages 2005-2051
    16. Jean-Luc Starck, Fionn Murtagh, Mario Bertero
      Pages 2053-2098
    17. Werner Benger, René Heinzl, Dietmar Hildenbrand, Tino Weinkauf, Holger Theisel, David Tschumperlé
      Pages 2099-2162
  5. Back Matter
    Pages 2163-2178

About this book

Introduction

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous.

This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography.

It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Keywords

Algorithmic Reconstruction Mathematical Imaging and Vision Support Vector Machines Variation in Imaging Wave Phenomena

Editors and affiliations

  • Otmar Scherzer
    • 1
  1. 1.Computational Science CenterUniversity of ViennaViennaAustria

Bibliographic information